


# TGS32F103 Series MCU

Data sheet

## **Function**

- Core: ARM32-bit Cortex<sup>TM</sup>-M3 core
  - Maximum operating frequency of 72MHz, up to 1.25DMips/MHz (Dhrystone2.1) when accessing the memory with 0 wait cycles
  - Single cycle multiplication and hardware division



## Memory

- 64 KB or 128 KB program Flash
- 20 KB SRAM

## · Clock, reset and power management

- $-2.0 \sim 3.6 \text{ V}$  power supply and I/O pins
- Power-on/power-off reset (POR/PDR), programmable voltage monitor (PVD)
- 4 ~ 16 MHz crystal oscillator
- Embedded factory-tuned 8 MHz high-speed RC oscillator
- Built-in 40 kHz low-speed RC oscillator
- PLL that generates the CPU clock
- 32 kHz RTC oscillator with calibration

#### Low power consumption

- Sleep, shutdown and standby modes
- $V_{\text{BAT}}$  powers the RTC and backup registers

# • 12-bit ADCs, 1ps conversion time (up to 16 inputs channel)

- Conversion range: 0 to 3.6 V
- Dual sampling and holding function
- Temperature sensor

#### • **DMA**:

- 7-channel DMA controller

- Supported peripherals: timers, ADC, SPI, I2C and USART

# • Up to 80 fast I/O ports

- 26/37/51/80 I/O ports on the O side, all I/O ports can be mapped to 16 external interrupts; almost all ports can withstand 5 V signals.

# • Debug mode

- Serial Single Wire Debug (SWD) and JTAG interface

#### • 7 timers

- 3 16-bit timers, each with up to 4 channels for input capture/output compare/PWM or pulse counting and incremental encoder inputs
- 16-bit PWM advanced control timer with dead zone control and emergency brake for motor control
- 2 watchdog timers (independent and windowed)
- System time timer: 24-bit self-decreasing counter

# • Up to 9 communication interfaces

- Up to 2 I2C interfaces (support SMBus/PMBus)
- Up to 3 USART interfaces (supports ISO7816 interface, LIN, IrDA interface and modem control)
- Up to 2 SPI interfaces (18Mbit/s)
- CAN interface (2.0B active)
- USB 2.0 full speed interface

## • CRC calculation unit, 96-bit unique chip identification code

#### 2. Description

The TGS32F103xB standard MCU series uses the high-performance ARM® Cortex<sup>TM</sup>-M3 32-bit RISC core, operating at 72 MHz, built-in high-speed memory (up to 128K bytes of flash memory and 20K bytes of SRAM), and rich enhanced I/O ports and peripherals connected to both APB buses. It contains 2 12-bit ADCs, 3 general-purpose 16-bit timers and 1 PWM timer. In addition, it also contains standard and advanced communication interfaces: up to 2 I2C interfaces and SPI interfaces, 3 USART interfaces, 1 USB interface and 1 CAN interface.

The TGS32F103xB standard MCU series products have a power supply voltage of 2.0 V to 3.6 V, an operating temperature range of -45°C to +105°C, and a series of power-saving modes to meet the requirements of low-power applications.

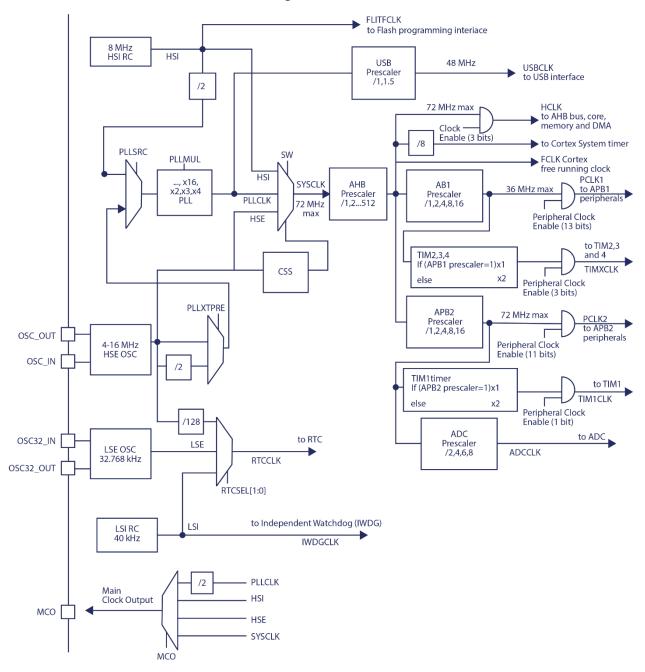
The TGS32F103xB standard series products provide 4 different package forms from 36 to 100 pins; depending on the package form, the peripheral configurations in the device are different. A basic introduction to all peripherals in this family of products is given below.

These rich peripheral configurations enable the TGS32F103xB standard series microcontrollers to be used in a variety of applications:

- Motor drives and application control
- Medical and handheld devices
- PC gaming peripherals and GPS platforms
- Industrial applications: Programmable controllers (PLCs), frequency converters, printers and scanners
- Alarm systems, video intercoms and HVAC systems, etc.

## 2.1 Device comparison

TGS32F103xB product functions and peripheral configuration


| Product model Peripheral interface |                                                                                                               | TGS32F103CB     | TGS32F103RB           | TGS32F103VB                             |
|------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------------------------|
| - K Bytes                          | 128                                                                                                           | 128             | 128                   | 128                                     |
| Bytes                              | 20                                                                                                            | 20              | 20                    | 20                                      |
| Universal                          | 3                                                                                                             | 3               | 3                     | 3                                       |
| Advanced control                   | 1                                                                                                             | 1               | 1                     | 1                                       |
| SPI                                | 1                                                                                                             | 2               | 2                     | 2                                       |
| I2C                                | 1                                                                                                             | 2               | 2                     | 2                                       |
| USART                              | 2                                                                                                             | 3               | 3                     | 3                                       |
| USB                                | 1                                                                                                             | 1               | 1                     | 1                                       |
| CAN                                | 1                                                                                                             | 1               | 1                     | 1                                       |
| r of channels)                     | 26                                                                                                            | 37              | 51                    | 80                                      |
| ous ADC                            | 2                                                                                                             | 2               | 2                     | 2                                       |
| nannels)                           | 10 channels                                                                                                   | 10 channels     | 16 channels           | 16 channels                             |
| ency                               |                                                                                                               | 7               | 2 MHz                 |                                         |
| oltage                             |                                                                                                               | 2.0             | V ~3.6V               |                                         |
| perature                           |                                                                                                               | Ambient tempera | ature: -45°C ~ +105°C |                                         |
| tion                               | QFN36                                                                                                         | LQFP48          | LQFP64                | LQFP100                                 |
|                                    | - K Bytes Bytes Universal Advanced control SPI I2C USART USB CAN r of channels) tous ADC tannels) ency eltage | TGS32F103TB     | TGS32F103TB           | TGS32F103TB   TGS32F103CB   TGS32F103RB |

TRACECLK TRACED[0:3] TPIU POWER Trace/trig V<sub>DD</sub>=2 to 3.6V V<sub>ss</sub> SW/JTAG NJTRST VOLT. REG. JTDI JTCK/SWCLK JTMS/SWDIO JTDO ldo 3.3V TO 1.8V Flash 128 KB @VDD flash Cortex-M3 CPU F<sub>max</sub>:7 2M Hz NVIC @VDD OSC\_IN PCLK1 PCLK2 HCLK FCLK XTAL OSC 4-16MHz PLL& OSC\_OUT GP DMA CLOCK 7 channels RC 8 MHz IWDG @VDDA Stand by interface @VDDA SUPPLY SUPERVISION NRST VDDA VSSA @VBAT POR/PDR OSC32\_IN OSC32\_OUT XTAL 32 kHz AHB2 APB2 APB1 RTC Backup TAMPER-RTC EXTI WAKEUP 80AF Backup interface PA[15:0] **GPIOA** TIM2 PB[15:0] **GPIOB** TIM3 PC[15:0] **GPIOC** TIM4 PD[15:0] RX,TX,CTS,RTS USART2 PE[15:0] GPIOE RX,TX,CTS,RTS USART3 MOSI,MISO,SCK,NSS 4Channels 3 compl.Channels TIMI ETR and BKIN 12C1 SCL,SDA,SMBA as AF MOSI,MISO,SCK,NSS SPII 12C2 SCL,SDA as AF as AF RX,TX,CTS,RTS < USART1 bxCAN SmartCard as AF JUSBDP/CAN\_TX @VDDA USBDM/CAN\_RX 12bit ADC1 16AF VREF+ SRAM 512B 12bit ADC2 VREF-WWDG Temp sensor

Figure 1. Functional block diagram

- 1. Operating temperature: -45°C to +105°C, junction temperature up to 150°C.
- 2. AF: I/O port that can be used as a peripheral function pin

Figure 2. Clock tree



## Legend:

HSE = high-speed external clock signal

HSI = high-speed internal clock signal

LSI = low-speed internal clock signal

LSE = low-speed external clock signal

- $1. When \ HSI \ is \ used \ as \ the \ input \ of \ the \ PLL \ clock, \ the \ maximum \ system \ clock \ frequency \ can \ only \ reach \ 64MHz.$
- 2. When using the USB function, HSE and PLL must be used at the same time, and the CPU frequency must be  $48\,\mathrm{MHz}$  or  $72\,\mathrm{MHz}$ .
- 3. When the ADC sampling time is required to be 1µs, APB2 must be set at 14 MHz, 28 MHz or 56 MHz.

#### 2.2 Overview

# 2.2.1 ARM® Cortex<sup>TM</sup>-M3 core with embedded flash memory and SRAM

ARM's Cortex<sup>TM</sup>-M3 processor is the latest generation of embedded ARM processors. It provides a low-cost platform, reduced pin count and reduced system power consumption to implement MCU needs, while providing excellent computing performance and Advanced interrupt system response.

ARM's Cortex<sup>TM</sup>-M3 is a 32-bit RISC processor that provides additional code efficiency, leveraging the high performance of ARM cores on the memory space typically found in 8- and 16-bit systems.

The TGS32F103xB standard series has a built-in ARM core, making it compatible with all ARM tools and software. Figure 1 is the functional block diagram of this series of products.

# 2.2.2 Built-in flash memory

128K bytes of built-in flash memory for program and data.

#### 2.2.3 CRC (cyclic redundancy check) calculation unit

The CRC (Cyclic Redundancy Check) calculation unit uses a fixed polynomial generator to generate a CRC code from a 32-bit data word. In numerous applications, CRC-based techniques are used to verify the consistency of data transmission or storage. Within the scope of the EN/IEC 60335-1 standard, which provides a means of detecting flash memory errors, a CRC calculation unit can be used to calculate the signature of the software in real time and compare it with the signature generated when the software is linked and generated.

#### 2.2.4 Built-in SRAM

20K bytes of built-in SRAM, CPU can access (read/write) with 0 wait cycles.

#### 2.2.5 Nested Vectored Interrupt Controller (NVIC)

The TGS32F103xB standard product has a built-in nested vectored interrupt controller that can handle up to 43 maskable interrupt channels.

(Excluding 16 Cortex<sup>TM</sup>-M3 interrupt lines) and 16 priority levels.

- Tightly coupled NVIC enables low-latency interrupt response processing
- The interrupt vector entry address enters the kernel directly
- Tightly coupled NVIC interface
- Allow early handling of interrupts
- Handle late arriving higher priority interrupts
- Supports interrupt tail link function
- Automatically save processor state
- Automatic recovery on interrupt return without additional instruction overhead.

This module provides flexible interrupt management capabilities with minimal interrupt latency.

#### 2.2.6 External interrupt/event controller (EXTI)

The external interrupt/event controller contains 19 edge detectors for generating interrupt/event requests. Each interrupt line can independently configure its trigger event (rising edge or falling edge or both edges) and can be independently masked; a pending register maintains the status of all interrupt requests. EXTI can detect pulses whose width is less than the clock period of internal APB2. Up to 80 general-purpose I/O ports are connected to 16 external interrupt lines.

#### 2.2.7 Clock and startup

The system clock is selected at startup. The internal 8 MHz RC oscillator is selected as the default CPU clock at reset. Subsequently, an external 4 ~ 16 MHz clock with failure monitoring can be selected; when the external clock failure is detected, it will Isolated, the system will automatically switch to the internal RC oscillator, and if interrupts are enabled, the software can receive corresponding interrupts. Likewise, complete interrupt management of the PLL clock can be implemented when required (e.g., when the external oscillator used during a period fails).

Multiple prescalers are used to configure the AHB frequency, high-speed APB (APB2) and low-speed APB (APB1) regions. AHB and high speed the maximum frequency of APB is 72 MHz and the maximum frequency of low speed APB is 36MHz. Refer to the clock driver block diagram shown in Figure 2.

## 2.2.8 Bootstrap mode

- At startup, one of three bootstrap modes can be selected via the bootstrap pin:
- Boot from program flash memory
- Boot from system memory
- Boot from internal SRAM

The bootloader is stored in the system memory and the flash memory can be reprogrammed through USART1.

## 2.2.9 Power supply solution

- $V_{DD} = 2.0 \sim 3.6 \text{ V}$ : The  $V_{DD}$  pin supplies power to the I/O pins and internal voltage regulator.
- $V_{SSA}$ ,  $V_{DDA}$ = 2.0 ~ 3.6 V: Provides power for the analog part of the ADC, reset module, RC oscillator and PLL. When using the ADC,  $V_{DDA}$  must not be less than 2.4 V.  $V_{DDA}$  and  $V_{SSA}$  must be connected to  $V_{DD}$  and  $V_{SS}$  respectively.
- $V_{BAT} = 1.8 \sim 3.6 \text{ V}$ : When  $V_{DD}$  is turned off, power is supplied (via the internal power switch) to the RTC, external 32 kHz oscillator and backup registers.

See Figure 10 Power Supply Scheme for details on how to connect the power pins.

## 2.2.10 Power supply monitor

This product integrates a power-on reset (POR)/power-down reset (PDR) circuit. This circuit is always in working state to ensure that the system works when the power supply exceeds 2 V; when  $V_{DD}$  is lower than the set threshold ( $V_{POR/PDR}$ ), the device is placed in the reset state without using an external reset circuit. There is also a programmable voltage monitor (PVD) in the device, which monitors the  $V_{DD}$  / $V_{DDA}$  power supply and compares it with the threshold  $V_{PVD}$ . When  $V_{DD}$  is lower than or higher than the threshold  $V_{PVD}$ , an interrupt is generated. The interrupt handler can issue a warning message or set the microcontroller goes into safe mode. The PVD function needs to be enabled through a program. Refer to Table 8 for  $V_{POR/PDR}$  and  $V_{PVD}$  values.

#### 2.2.11 Voltage regulator

The voltage regulator has three operating modes: main mode (MR), low power mode (LPR) and shutdown mode

- Master mode (MR) for normal running operation
- Low power mode (LPR) for CPU shutdown mode
- Shutdown mode is used in the standby mode of the CPU: the output of the voltage regulator is in a high-impedance state, the power supply to the core circuit is cut off, and the voltage regulator is in a

zero-consumption state (but the contents of the register and SRAM will be lost)

The regulator is always active after reset and shuts down in standby mode with a high-impedance output.

#### 2.2.12 Low power mode

The TGS32F103xB standard product supports three low-power modes to achieve the best balance between low power consumption, short startup time and multiple wake-up events.

#### Sleep mode

In sleep mode, only the MCU is stopped, all peripherals are active and can wake up the MCU when an interrupt/event occurs.

#### Shutdown mode

Stop mode can achieve the lowest power consumption without losing SRAM and register contents. In shutdown mode, the power supply to all internal 1.5 V parts is stopped, the PLL, HSI's RC oscillator and HSE crystal oscillator are turned off, and the voltage regulator can be placed in normal mode or low power mode.

The microcontroller can be woken up from Stop mode by any signal configured as EXTI. The EXTI signal can be 16 external one of the I/O ports, PVD output, RTC alarm clock or USB wake-up signal.

## Standby mode

The lowest power consumption can be achieved in standby mode. The internal voltage regulator is turned off, so the power supply to all internal 1.5 V parts is cut off; the PLL, HSI RC oscillator and HSE crystal oscillator are also turned off; after entering standby mode, the contents of SRAM and registers will disappear, but the contents of the backup register are still retained and the standby circuit is still working.

The conditions for exiting from standby mode are: an external reset signal on NRST, an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm.

Note: When entering shutdown or standby mode, RTC, IWDG and their corresponding clocks will not be stopped.

#### 2.2.13 DMA

Flexible 7-way general-purpose DMA manages memory-to-memory, device-to-memory, and memory-to-device data transfers;

The DMA controller supports ring buffer management, which avoids interrupts when the controller transfer reaches the end of the buffer.

Each channel has dedicated hardware DMA request logic, and each channel can be triggered by software; the length of the transfer, the source address and destination address of the transfer can be set individually through software.

DMA can be used with the main peripherals: SPI, I2C, USART as well as general-purpose, high-level control timers TIMx and ADC.

#### 2.2.14 RTC (real-time clock) and backup register

The RTC and backup registers are powered through a switch that selects VDD when VDD is valid, otherwise powered by the VBAT pin. The backup registers (10 16-bit registers) can be used to save 20 bytes of user application data when VDD is turned off. The RTC and backup registers are not reset by system or power reset sources, nor are they reset when waking from standby mode.

The real-time clock has a set of continuously running counters, can provide a calendar clock function

through appropriate software, and also has alarm interrupt and stage interrupt functions. The driving clock of the RTC can be a 32.768kHz oscillator using an external crystal, an internal low-power RC oscillator, or a high-speed external clock divided by 128. The internal low-power RC oscillator has a typical frequency of 40kHz. To compensate for natural crystal deviations, the RTC's clock can be calibrated by outputting a 512Hz signal. The RTC has a 32-bit programmable counter that allows long-term measurements using the compare register. There is a 20-bit prescaler for the time base clock which will produce a one second long time base by default when the clock is 32.768kHz.

#### 2.2.15 Timers and watchdogs

The TGS32F103xB standard series includes 1 advanced control timer, 3 general-purpose timers, 2 watchdog timers and 1 system timer.

The following table compares the functionality of advanced control timers, normal timers, and basic timers:

| Timer                | Counter resolution | Counter type        | Prescaler<br>coefficient                 | Generate DMA<br>request | Capture/compare channels | Compleme<br>ntary<br>output |
|----------------------|--------------------|---------------------|------------------------------------------|-------------------------|--------------------------|-----------------------------|
| TIM1                 | 16 bit             | Count up/down count | Any number<br>between 1~65536<br>integer | Can                     | 4                        | Have                        |
| TIM2<br>TIM3<br>TIM4 | 16 bit             | Count up/count down | Any integer between 1~65536              | Can                     | 4                        | No                          |

Table 1. Timer function comparison

## Advanced control timer (TIM1)

The Advanced Control Timer (TIM1) can be viewed as a three-phase PWM generator assigned to 6 channels, with complementary PWM outputs with dead-band insertion, or as a complete general-purpose timer. 4 independent channels can be used for:

- Input capture
- Output comparison
- Generate PWM (edge or center aligned mode)
- Single pulse output

When configured as a 16-bit standard timer, it has the same functionality as the TIMx timer. When configured as a 16-bit PWM generator, it has full modulation capability (0~100%).

In debug mode, the counters can be frozen and the PWM outputs disabled, thereby turning off the switches controlled by these outputs. Many functions are the same as the standard TIM timer and the internal structure is the same, so the advanced control timer can operate in conjunction with the TIM timer through the timer link function to provide synchronization or event link functions.

#### **General purpose timer (TIMx)**

The TGS32F103xB standard product has built-in up to 3 standard timers (TIM2, TIM3 and TIM4) that can run synchronously. Each timer has a 16-bit auto-loading up/down counter, a 16-bit prescaler and 4 independent channels, each channel can be used for input capture, output compare, PWM and single pulse mode Outputs, providing up to 12 input capture, output compare, or PWM channels in the largest package configuration.

They can also work with advanced control timers via the timer linking feature, providing synchronization or event linking capabilities. In debug mode, the counter can be frozen. Any standard timer can be used to generate the PWM output. Each timer has an independent DMA

request mechanism.

These timers are also capable of processing the signals of incremental encoders, as well as the digital outputs of 1 to 3 Hall sensors.

#### **Independent watchdog**

The independent watchdog is based on a 12-bit down counter and an 8-bit prescaler, which is clocked by an internal independent 40 kHz RC oscillator; because this RC oscillator is independent of the main clock, it can run in shutdown mode and standby mode. It can be used as a watchdog to reset the entire system when a problem occurs, or as a free timer to provide timeout management for applications. The watchdog can be configured to be software or hardware enabled through the option byte. In debug mode, counters can be frozen.

## Window watchdog

The window watchdog contains a 7-bit down counter that can be configured as a free-running counter. When used as a watchdog, the entire system can be reset if a problem occurs. It is driven by the main clock and has an early warning interrupt function; in debug mode, the counter can be frozen.

#### System time base timer

This timer can be used exclusively in real-time operating systems, or it can be used as a standard down counter. It has the following characteristics:

- 24-bit down counter
- · Auto-reload feature
- Can generate a maskable system interrupt when the counter reaches 0
- Programmable clock source

#### 2.2.16 I2C bus

Up to 2 I2C bus interfaces, capable of working in multi-master mode or slave mode, supporting standard mode and fast mode.

The I2C interface supports 7-bit or 10-bit addressing, and the 7-bit slave mode supports dual slave address addressing. Built-in hardware CRC generator/checker. The interface operates using DMA and supports the SMBus bus version 2.0/PMBus bus.

#### 2.2.17 Universal Synchronous/Asynchronous Receiver-Transmitter (USART)

The communication rate of the USART1 interface can reach 4.5 Mb/s, and the communication rate of other interfaces can reach 2.25 Mb/s. The USART interface has hardware CTS and RTS signal management, supports IrDA SIR ENDEC transmission codec, is compatible with ISO7816 smart cards and provides LIN master/slave functionality. All USART interfaces can use DMA operations.

# 2.2.18 Serial Peripheral Interface (SPI)

Up to 2 SPI interfaces, configurable in slave or master mode, with communication rates up to 18 Mb/s in full and half duplex. The 3-bit prescaler generates 8 master mode frequencies, configurable into 8-bit or 16-bit data frame format. Hardware CRC generation/checking supports basic SD card and MMC modes.

All SPI interfaces can use DMA operations.

#### 2.2.19 Controller Area Network (CAN)

The CAN interface is compatible with specifications 2.0A and 2.0B (active) with bit rates up to 1 Mb/s. It can receive and send standard frames with an 11-bit identifier, or extended frames with a 29-

bit identifier. Features 3 send mailboxes and 2 receive FIFOs, 3 levels of 14 adjustable filters.

## 2.2.20 Universal Serial Bus (USB)

The TGS32F103xB standard series products embed a device controller compatible with full-speed USB and comply with the full-speed USB device (12 Mb/s) standard, endpoints are software configurable with standby/wake capabilities. The USB-specific 48 MHz clock is generated directly by the internal main PLL (the clock source must be an HSE crystal oscillator).

## 2.2.21 General input and output interface (GPIO)

Each GPIO pin can be configured by software as an output (push-pull or open-drain), input (pull-up or pull-down or floating), or a multiplexed peripheral function port. Most GPIO pins are shared with multiplexed digital or analog peripherals. In addition to having analog input capabilities, all GPIO pins allow large currents to pass through them.

If desired, the peripheral function of an I/O pin can be locked by a specific operation to avoid accidental writes to the I/O registers. The I/O pins on APB2 can toggle up to 18 MHz.

# 2.2.22 ADC (analog/digital converter)

The TGS32F103xB standard product embeds two 12-bit analog/digital converters (ADCs). Each ADC shares up to 16 external channels and can achieve single conversion or scan mode conversion. In scan mode, conversions are automatically performed on a selected set of analog input pins.

Other logic functions on the ADC interface include:

- Synchronized sample and hold
- Interleaved sample and hold
- Single sampling

The ADC can operate using DMA.

The analog watchdog can monitor one, multiple or all selected channels very accurately. When the monitored signal exceeds the preset threshold, the analog watchdog will generate an interrupt.

Events generated by the standard timer (TIMx) and the advanced control timer (TIM1) can be internally cascaded to the start trigger and injection trigger of the ADC respectively, and the application can synchronize the AD conversion with the clock.

# 2.2.23 Temperature sensor

The temperature sensor generates a voltage that changes linearly with temperature, with a conversion range of 2 V < VDDA < 3.6 V. The temperature sensor is internally connected to the input channel of ADC1 IN16, which converts the sensor output to a digital value.

## 2.2.24 Serial single-wire JTAG debug port (SWJ-DP)

Embedded ARM's SWJ-DP interface, which is an interface that combines JTAG and serial single-wire debugging, can realize the connection of the serial single-wire debugging interface or the JTAG interface. The TMS and TCK signals of JTAG share pins with SWDIO and SWCLK respectively. A special signal sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

## 3. Pin definition

Figure 3. TGS32F103xB LQFP100 pin distribution

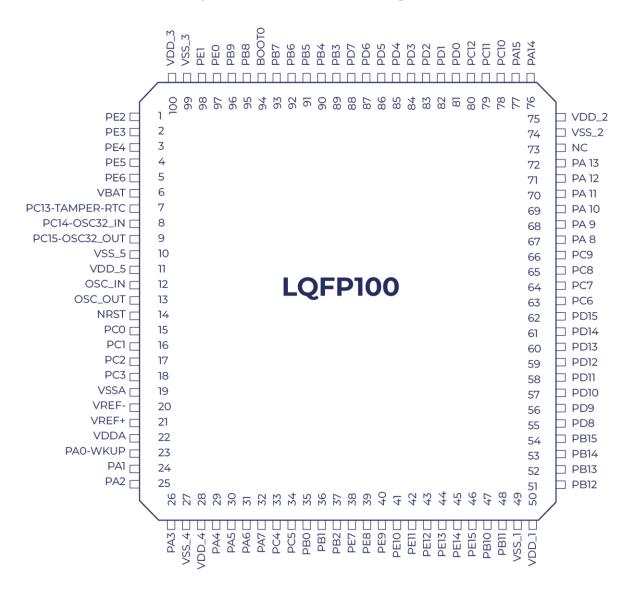



Figure 4. TGS32F103xB LQFP64 pin distribution

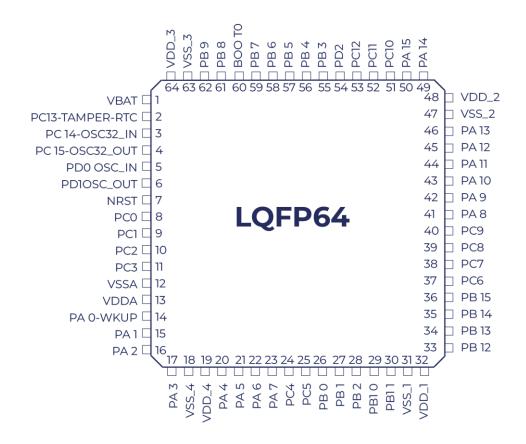



Figure 5. TGS32F103xB LQFP48 pin distribution

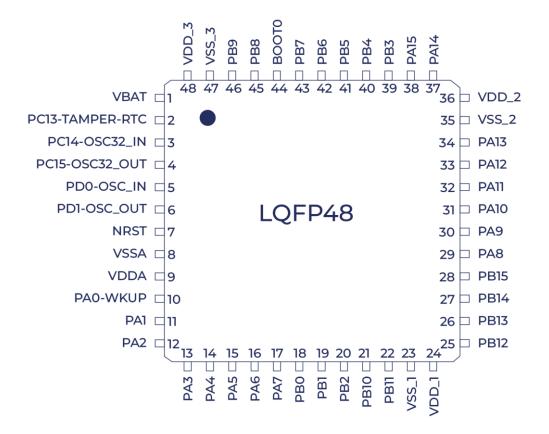



Figure 6. TGS32F103xB QFN36 pin distribution

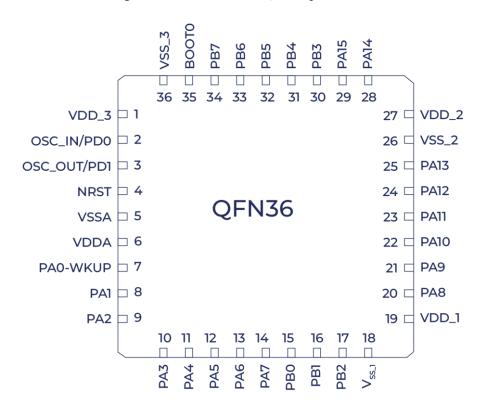


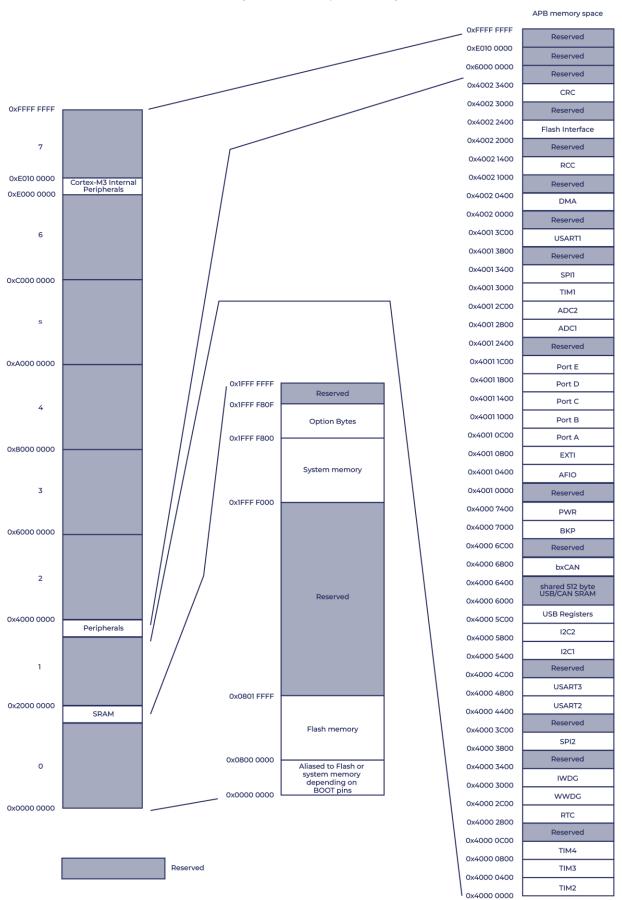

Table 2. TGS32F103XBxx pins definition

| Fo     | ot posi | tion    |        |                        |                  | 5)                      |                              | Ontional ro            | euse function     |
|--------|---------|---------|--------|------------------------|------------------|-------------------------|------------------------------|------------------------|-------------------|
| 48     | 64      | 100     | 36     | 75.1                   | e <sup>(1)</sup> | vel <sup>C</sup>        | Main function <sup>(3)</sup> | Optional re            | cuse function     |
| LQFP48 | LQFP64  | LQFP100 | QFPN36 | Pin name               | $Type^{(1)}$     | IO level <sup>(2)</sup> | (after reset)                | Default reuse function | Redefine function |
| -      | -       | 1       | -      | PE2                    | I/O              | FT                      | PE2                          | TRACECK                |                   |
| -      | -       | 2       | -      | PE3                    | I/O              | FT                      | PE3                          | TRACED0                |                   |
| -      | -       | 3       | -      | PE4                    | I/O              | FT                      | PE4                          | TRACED1                |                   |
| -      | -       | 4       | -      | PE5                    | I/O              | FT                      | PE5                          | TRACED2                |                   |
| -      | -       | 5       | -      | PE6                    | I/O              | FT                      | PE6                          | TRACED3                |                   |
| 1      | 1       | 6       | -      | VBAT                   | S                |                         | VBAT                         |                        |                   |
| 2      | 2       | 7       | -      | PC13-<br>TAMPER- RTC   | I/O              |                         | PC13                         | TAMPER-RTC             |                   |
| 3      | 3       | 8       | -      | PC14- OSC32_IN         | I/O              |                         | PC14                         | OSC32_IN               |                   |
| 4      | 4       | 9       | _      | PC15-<br>OSC32_OUT (5) | I/O              |                         | PC15                         | OSC32_OUT              |                   |
| -      | -       | 10      | -      | VSS_5                  | S                |                         | VSS_5                        |                        |                   |
| -      | -       | 11      | -      | VDD_5                  | S                |                         | VDD_5                        |                        |                   |
| 5      | 5       | 12      | 2      | OSC_IN                 | I                |                         | OSC_IN                       |                        | PD0(7)            |
| 6      | 6       | 13      | 3      | OSC_OUT                | О                |                         | OSC_OUT                      |                        | PD1(7)            |
| 7      | 7       | 14      | 4      | NRST                   | I/O              |                         | NRST                         |                        |                   |
| -      | 8       | 15      | -      | PC0                    | I/O              |                         | PC0                          | ADC12_IN10             |                   |
| -      | 9       | 16      | -      | PC1                    | I/O              |                         | PC1                          | ADC12_IN11             |                   |
| -      | 10      | 17      | -      | PC2                    | I/O              |                         | PC2                          | ADC12_IN12             |                   |
| -      | 11      | 18      | -      | PC3                    | I/O              |                         | PC3                          | ADC12_IN13             |                   |
| 8      | 12      | 19      | 5      | VSSA                   | S                |                         | VSSA                         |                        |                   |
| -      | -       | 20      | -      | VREF-                  | S                |                         | VREF-                        |                        |                   |
| -      | -       | 21      | -      | VREF+                  | S                |                         | VREF+                        |                        |                   |
| 9      | 13      | 22      | 6      | VDDA                   | S                |                         | VDDA                         |                        |                   |

| 10 | 14 | 23 | 7  | PA0-WKUP | I/O | PA0   | WKUP/USART2_CT<br>S<br>/ADC12_IN0/TIM2_<br>CH1_ETR |           |
|----|----|----|----|----------|-----|-------|----------------------------------------------------|-----------|
| 11 | 15 | 24 | 8  | PA1      | I/O | PA1   | USART2_RTS<br>/ADC12_IN1/TIM2_<br>CH2              |           |
| 12 | 16 | 25 | 9  | PA2      | I/O | PA2   | USART2_TX<br>/ADC12_IN2/TIM2_<br>CH3               |           |
| 13 | 17 | 26 | 10 | PA3      | I/O | PA3   | USART2_RX<br>/ADC12_IN3/TIM2_<br>CH4               |           |
| -  | 18 | 27 | -  | VSS_4    | S   | VSS_4 |                                                    |           |
| -  | 19 | 28 | -  | VDD_4    | S   | VDD_4 |                                                    |           |
| 14 | 20 | 29 | 11 | PA4      | I/O | PA4   | SPI1_NSS<br>/USART2_CK<br>/ADC12_IN4               |           |
| 15 | 21 | 30 | 12 | PA5      | I/O | PA5   | SPI1_SCK<br>/ADC12_IN5                             |           |
| 16 | 22 | 31 | 13 | PA6      | I/O | PA6   | SPI1_MISO<br>/ADC12_IN6/TIM3_<br>CH1               | TIM1_BKIN |
| 17 | 23 | 32 | 14 | PA7      | I/O | PA7   | SPI1_MOSI<br>/ADC12_IN7/TIM3_<br>CH2               | TIM1_CH1N |
| -  | 24 | 33 |    | PC4      | I/O | PC4   | ADC12_IN14                                         |           |
| -  | 25 | 34 |    | PC5      | I/O | PC5   | ADC12_IN15                                         |           |
| 18 | 26 | 35 | 15 | PB0      | I/O | PB0   | ADC12_IN8/TIM3_C<br>H3                             | TIM1_CH2N |

|          | Foot p | osition |        |             |                     | 2)                      |                              | Optional reuse                                  | function          |
|----------|--------|---------|--------|-------------|---------------------|-------------------------|------------------------------|-------------------------------------------------|-------------------|
| <b>∞</b> | 64     | 00      | 36     |             | e <sup>(1)</sup>    | /el                     | Main function <sup>(3)</sup> | Optional reuse                                  | Tunction          |
| LQFP48   | LQFP64 | LQFP100 | QFPN36 | Pin name    | Type <sup>(1)</sup> | IO level <sup>(2)</sup> | (after reset)                | <b>Default reuse function</b>                   | Redefine function |
| 19       | 27     | 36      | 16     | PB1         | I/O                 |                         | PB1                          | ADC12_IN9/TIM3_CH4                              | TIM1_CH3N         |
| 20       | 28     | 37      | 17     | PB2         | I/O                 | FT                      | PB2/BOOT1                    |                                                 |                   |
| -        | -      | 38      | -      | PE7         | I/O                 | FT                      | PE7                          |                                                 | TIM1_ETR          |
| -        | -      | 39      | -      | PE8         | I/O                 | FT                      | PE8                          |                                                 | TIM1_CH1N         |
| -        | -      | 40      | -      | PE9         | I/O                 | FT                      | PE9                          |                                                 | TIM1_CH1          |
| -        | -      | 41      | -      | PE10        | I/O                 | FT                      | PE10                         |                                                 | TIM1_CH2N         |
| -        | -      | 42      | -      | PE11        | I/O                 | FT                      | PE11                         |                                                 | TIM1_CH2          |
| -        | -      | 43      | -      | PE12        | I/O                 | FT                      | PE12                         |                                                 | TIM1_CH3N         |
| -        | -      | 44      | -      | PE13        | I/O                 | FT                      | PE13                         |                                                 | TIM1_CH3          |
| -        | -      | 45      | -      | PE14        | I/O                 | FT                      | PE14                         |                                                 | TIM1_CH4          |
| -        | -      | 46      | -      | PE15        | I/O                 | FT                      | PE15                         |                                                 | TIM1_BKIN         |
| 21       | 29     | 47      | 1      | PB10        | I/O                 | FT                      | PB10                         | I2C2_SCL/USART3_<br>TX                          | TIM2_CH3          |
| 22       | 30     | 48      | -      | PB11        | I/O                 | FT                      | PB11                         | I2C2_SDA/USART3_RX                              | TIM2_CH4          |
| 23       | 31     | 49      | 18     | $V_{SS\_1}$ | S                   |                         | $ m V_{SS\_1}$               |                                                 |                   |
| 24       | 32     | 50      | 19     | $V_{DD}_1$  | S                   |                         | $V_{\mathrm{DD}}$ 1          |                                                 |                   |
| 25       | 33     | 51      | ı      | PB12        | I/O                 | FT                      | PB12                         | SPI2_NSS/I2C2_SM<br>BAI/USART3_CK<br>/TIM1_BKIN |                   |
| 26       | 34     | 52      | 1      | PB13        | I/O                 | FT                      | PB13                         | SPI2_SCK/USART3_<br>CTS /TIM1_CH1N              |                   |
| 27       | 35     | 53      | -      | PB14        | I/O                 | FT                      | PB14                         | SPI2_MISO/USART3<br>_RTS TIM1_CH2N              |                   |

| 28 | 36 | 54 | _  | PB15               | I/O | FT | PB15               | CDI2 MOCL/TIM1 CH2N                    |                                |
|----|----|----|----|--------------------|-----|----|--------------------|----------------------------------------|--------------------------------|
| 28 | 30 | 54 | -  | PB15               | 1/0 | гі | PB15               | SPI2_MOSI/TIM1_CH3N                    |                                |
| -  | -  | 55 | -  | PD8                | I/O | FT | PD8                |                                        | USART3_TX                      |
| -  | -  | 56 | -  | PD9                | I/O | FT | PD9                |                                        | USART3_RX                      |
| -  | -  | 57 | -  | PD10               | I/O | FT | PD10               |                                        | USART3_CK                      |
| -  | -  | 58 | -  | PD11               | I/O | FT | PD11               |                                        | USART3_CTS                     |
| -  | 1  | 59 | -  | PD12               | I/O | FT | PD12               |                                        | TIM4_CH1<br>/USART3_RTS        |
| -  | -  | 60 | -  | PD13               | I/O | FT | PD13               |                                        | TIM4_CH2                       |
| -  | -  | 61 | -  | PD14               | I/O | FT | PD14               |                                        | TIM4_CH3                       |
| -  | -  | 62 | -  | PD15               | I/O | FT | PD15               |                                        | TIM4_CH4                       |
| -  | 37 | 63 | -  | PC6                | I/O | FT | PC6                |                                        | TIM3_CH1                       |
|    | 38 | 64 | -  | PC7                | I/O | FT | PC7                |                                        | TIM3_CH2                       |
|    | 39 | 65 | -  | PC8                | I/O | FT | PC8                |                                        | TIM3_CH3                       |
| -  | 40 | 66 | -  | PC9                | I/O | FT | PC9                |                                        | TIM3_CH4                       |
| 29 | 41 | 67 | 20 | PA8                | I/O | FT | PA8                | USART1_CK/TIM1_CH1<br>/MCO             |                                |
| 30 | 42 | 68 | 21 | PA9                | I/O | FT | PA9                | USART1_TX<br>/TIM1_CH2                 |                                |
| 31 | 43 | 69 | 22 | PA10               | I/O | FT | PA10               | USART1_RX<br>/TIM1_CH3                 |                                |
| 32 | 44 | 70 | 23 | PA11               | I/O | FT | PA11               | USART1_CTS/CANRX<br>/USBDM/TIM1_CH4    |                                |
| 33 | 45 | 71 | 24 | PA12               | I/O | FT | PA12               | USART1_RTS/<br>CANTX/USBDPTIM<br>1_ETR |                                |
| 34 | 46 | 72 | 25 | PA13               | I/O | FT | JTMS/SWDIO         | _                                      | PA13                           |
| -  | -  | 73 | -  |                    |     |    | Not connec         | ted                                    |                                |
| 35 | 47 | 74 | 26 | $V_{SS_2}$         | S   |    | $ m V_{SS\_2}$     |                                        |                                |
| 36 | 48 | 75 | 27 | V <sub>DD</sub> _2 | S   |    | V <sub>DD</sub> _2 |                                        |                                |
| 37 | 49 | 76 | 28 | PA14               | I/O | FT | JTCK/SWCLK         |                                        | PA14                           |
| 38 | 50 | 77 | 29 | PA15               | I/O | FT | JTDI               |                                        | TIM2_CH1_ETR/<br>PA15/SPI1_NSS |


|        | Foot p | ositior |        |          |         |             |                  |                           |                                      |
|--------|--------|---------|--------|----------|---------|-------------|------------------|---------------------------|--------------------------------------|
|        |        |         |        |          | Œ       | el(2        | Main function(3) | Optional re               | euse function                        |
| LQFP48 | LQFP64 | LQFP100 | QFPN36 | Pin name | Type(1) | IO level(2) | (after reset)    | Default reuse<br>function | Redefine function                    |
| -      | 51     | 78      |        | PC10     | I/O     | FT          | PC10             |                           | USART3_TX                            |
| -      | 52     | 79      |        | PC11     | I/O     | FT          | PC11             |                           | USART3_RX                            |
| -      | 53     | 80      |        | PC12     | I/O     | FT          | PC12             |                           | USART3_CK                            |
| -      | -      | 81      | 2      | PD0      | I/O     | FT          | PD0              |                           | CANRX                                |
| -      | -      | 82      | 3      | PD1      | I/O     | FT          | PD1              |                           | CANTX                                |
|        | 54     | 83      | -      | PD2      | I/O     | FT          | PD2              | TIM3_ETR                  |                                      |
| -      | -      | 84      | -      | PD3      | I/O     | FT          | PD3              |                           | USART2_CTS                           |
| -      | -      | 85      | -      | PD4      | I/O     | FT          | PD4              |                           | USART2_RTS                           |
| -      | -      | 86      | -      | PD5      | I/O     | FT          | PD5              |                           | USART2_TX                            |
| -      | -      | 87      | -      | PD6      | I/O     | FT          | PD6              |                           | USART2_RX                            |
| -      | -      | 88      | -      | PD7      | I/O     | FT          | PD7              |                           | USART2_CK                            |
| 39     | 55     | 89      | 30     | PB3      | I/O     | FT          | JTDO             |                           | TIM2_CH2<br>/PB3TRACESWOSP<br>I1_SCK |
| 40     | 56     | 90      | 31     | PB4      | I/O     | FT          | JNTRST           |                           | TIM3_CH1/PB4/SPI<br>1_MISO           |
| 41     | 57     | 91      | 32     | PB5      | I/O     |             | PB5              | I2C1_SMBAl                | TIM3_CH2<br>/SPI1_MOSI               |
| 42     | 58     | 92      | 33     | PB6      | I/O     | FT          | PB6              | I2C1_SCL<br>/TIM4_CH1     | USART1_TX                            |
| 43     | 59     | 93      | 34     | PB7      | I/O     | FT          | PB7              | I2C1_SDA<br>/TIM4_CH2     | USART1_RX                            |
| 44     | 60     | 94      | 35     | BOOT0    | I       |             | BOOT0            |                           |                                      |
| 45     | 61     | 95      | -      | PB8      | I/O     | FT          | PB8              | TIM4_CH3                  | I2C1_SCL /CANRX                      |
| 46     | 62     | 96      | -      | PB9      | I/O     | FT          | PB9              | TIM4_CH4                  | I2C1_SDA/CANTX                       |
| -      | -      | 97      | -      | PE0      | I/O     | FT          | PE0              | TIM4_ETR                  |                                      |

| -  | -  | 98  | -  | PE1               | I/O | FT | PE1               |  |
|----|----|-----|----|-------------------|-----|----|-------------------|--|
| 47 | 63 | 99  | 36 | $V_{SS_3}$        | S   |    | $V_{SS\_3}$       |  |
| 48 | 64 | 100 | 1  | V <sub>DD</sub> 3 | S   |    | V <sub>DD</sub> 3 |  |

- 1. I = input, O = output, S = power supply
- 2. FT: 5 V voltage tolerance
- 3. PC13, PC14 and PC15 pins are powered by the power switch, and this power switch can only sink limited current (3 mA). Therefore, these three pins have the following limitations when used as output pins: only one pin can be used as an output at the same time. When used as an output pin, it can only work in 2 MHz mode, the maximum driving load is 30 pF, and it cannot be used as a current source (Such as driving LED).
- 4. These pins are in the main function state when the backup area is powered on for the first time. Even if reset later, the status of these pins is controlled by the backup area registers (these registers will not be reset by the main reset system). For specific information on how to control these IO ports, please refer to the relevant chapters of the battery backup area and BKP register in the TGS32F103xB reference manual.
- 5. This type of alternate function can be configured by software to other pins (if the corresponding package model has this pin). For details, please refer to the alternate function I/O chapter and debugging settings chapter of the TGS32F103xB reference manual.
- 6. Pins 2 and 3 of the QFN36 package, and pins 5 and 6 of the LQFP48 and LQFP64 packages are configured as OSC\_IN and OSC\_OUT function pins by default after the chip is reset. Software can reset these two pins to the PD0 and PD1 functions. But for the LQFP100 package, since PD0 and PD1 are inherent function pins, there is no need to reimage settings by software. For more details, please refer to the Alternate Function I/O Chapter and Debug Settings Chapter of the TGS32F103xB Reference Manual. In output mode, PD0 and PD1 can only be configured in 50MHz output mode.
- 7. ADC12\_INx (x represents an integer between 0 and 15) appears in the pin name label in the table, indicating that this pin can be ADC1\_INx or ADC2\_INx. For example: ADC12\_IN9 means that this pin can be configured as ADC1\_IN9 or ADC2\_IN9.
- 8. Pin PA0 in the table corresponds to TIM2\_CH1\_ETR in the multiplex function, which means that the function can be configured as TIM2\_TI1 or TIM2\_ETR. Similarly, the name TIM2\_CH1\_ETR of the remapping multiplexing function corresponding to PA15 has the same meaning.

## 4. Memory image

Figure 7. Memory MAP diagram



#### 5. Electrical Characteristics

#### **5.1 Test conditions**

Unless otherwise stated, all voltages are referenced to VSS.

#### 5.1.1 Minimum and maximum values

Unless otherwise stated, all minimum and maximum values will be based on worst-case testing performed on 100% of the product on the production line at an ambient temperature of  $T_A = 25$ °C and  $T_A = T_{Amax}$  ( $T_{Amax}$  matches the selected temperature range). Guaranteed under ambient temperature, supply voltage and clock frequency conditions.

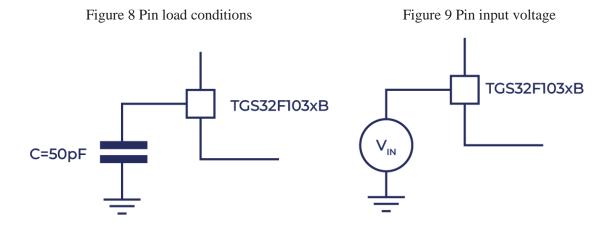
In the notes below each table, it is stated that the data is obtained through comprehensive evaluation, design simulation and/or process characteristics, and will not be tested on the production line; on the basis of comprehensive evaluation, the minimum and maximum values are obtained after passing sample testing. It is obtained by taking the average value and adding or subtracting three times the standard distribution (average  $\pm 3\Sigma$ ).

# 5.1.2 Typical values

Unless otherwise stated, typical data is based on  $T_A = 25^{\circ}\text{C}$  and  $V_{DD} = 3.3 \text{ V}$  ( $2\text{V} \le V_{DD} \le 3.3\text{V}$  voltage range). These data are for design guidance only and have not been tested.

Typical ADC accuracy values are obtained by sampling a standard batch and testing over all temperature ranges. 95% of the products have an error less than or equal to the given value (average  $\pm 2 \Sigma$ ).

## 5.1.3 Typical curve


Unless otherwise stated, typical curves are for design guidance only and have not been tested.

#### **5.1.4** Load capacitance

The load conditions when measuring pin parameters are shown in Figure 8.

#### 5.1.5 Pin input voltage

How the input voltage on the pin is measured is shown in Figure 9.



# **5.1.6** Power supply solution

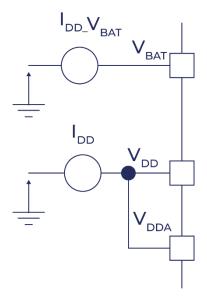

Backup circuitry Power switch 1.8-3.6V (OSC32K,RTC, Wake-up logic Backup registers) OUT Level shifter 10 GP I/Os Logic IN Kernel logic (CPU, Digital  $V_{DD}$ & Memories) V<sub>DD 1/2/../11</sub> Regulator 11×100nF +1×4.7µF V<sub>SS1/2/../11</sub>  $V_{DD}$  $V_{DDA}$  $V_{REF}$  $\mathsf{v}_{\mathsf{REF}}$ Analog: 10nF 10nF **ADC**  $\mathsf{V}_{\mathsf{REF} ext{-}}$ RCs, PLL +1μΕ +1μΕ  $V_{\underline{SSA}}$ 

Figure 10. Power supply scheme

Note: The 4.7uf capacitor in the above picture must be connected to  $V_{\text{DD3}}$ .

## **5.1.7** Current consumption measurement

Figure 11. Current consumption measurement scheme



## **5.2 Absolute Maximum Ratings**

Loads applied to the device in excess of those given in the absolute maximum ratings tables (Table 3, Table 4, Table 5) may cause permanent damage to the device. This only gives the maximum load that can be withstood, and does not mean that the functional operation of the device is correct under this condition. Long-term operation of the device under maximum conditions will affect the reliability of the device.

Table 3. Voltage characteristics

| Symbol                            | Describe                                                                        | Minimum<br>value   | Maximum<br>value     | Unit |  |
|-----------------------------------|---------------------------------------------------------------------------------|--------------------|----------------------|------|--|
| V <sub>DD</sub> – V <sub>SS</sub> | External main supply voltage (including $V_{DDA}$ and $V_{DD}$ ) <sup>(1)</sup> | -0.3               | 4.0                  |      |  |
|                                   | Input voltage on 5V tolerant pins <sup>(2)</sup>                                | Vss -0.3           | V <sub>DD</sub> +4.0 | V    |  |
| Vin                               | Input voltage on other pins <sup>(2)</sup>                                      | Vss -0.3           | 4.0                  |      |  |
| $ \Delta V_{\text{DDX}} $         | The voltage difference between different supply pins                            | -                  | 50                   | V    |  |
| Vssx - Vss                        | The voltage difference between different ground pins                            | -                  | 50                   | mV   |  |
| Vesd(hbm)                         | ESD electrostatic discharge voltage (human body model)                          | See Section 5.3.11 |                      |      |  |

<sup>1.</sup> All power  $(V_{DD}, V_{DDA})$  and ground  $(V_{SS}, V_{SSA})$  pins must always be connected to an external power supply system within the allowed range.

Table 4. Current Characteristics

| Symbol                    | Describe                                                                               | Maximum<br>value | Unit |
|---------------------------|----------------------------------------------------------------------------------------|------------------|------|
| $I_{\mathrm{VDD}}$        | Total current through the $V_{DD}/V_{DDA}$ power lines (supply current) <sup>(1)</sup> | 150              |      |
| Ivss                      | Total current through Vss ground (outgoing current)(1)                                 | 150              |      |
| $I_{IO}$                  | Output sink current on any I/O and control pins                                        | 25               |      |
| 110                       | Output current on any I/O and control pins                                             | -25              | mA   |
| I <sub>INJ(PIN)</sub> (2) | 5V Tolerant Pin Injection Current                                                      | -5/+0            |      |
| IINJ(PIN) (=/             | Injection current from other pins <sup>(4)</sup>                                       | ±5               |      |
| $\sum I_{INJ(PIN)}$       | Total injected current on all I/O and control pins <sup>(4)</sup>                      | ±25              |      |

<sup>1.</sup> All power supply  $(V_{DD}, V_{DDA})$  and ground  $(V_{SS}, V_{SSA})$  pins must always be connected to the external power supply system within the allowed range.

- 2.  $I_{INJ(PIN)}$  must not exceed its limit, that is, ensure that  $V_{IN}$  does not exceed its maximum value. If it cannot be guaranteed that  $V_{IN}$  does not exceed its maximum value, it must also be ensured that the external limit  $I_{INJ(PIN)}$  does not exceed its maximum value. When  $V_{IN} > V_{DD}$ , there is a forward injection current; when  $V_{IN} < V_{SS}$ , there is a reverse injection current.
- 3. Reverse injection of current can interfere with the analog performance of the device. See Section 5.3.17.
- 4. When several I/O ports have injection currents at the same time, the maximum value of  $\Sigma$  I<sub>INJ(PIN)</sub> is the sum of the immediate absolute values of the forward injection current and the reverse injection current. This result is based on the characteristics of the maximum value of  $\Sigma$  I<sub>INJ(PIN)</sub> on the device's 4 I/O ports.

Table 5. Temperature characteristics

| Symbol | Describe                     | Numerical value | Unit |
|--------|------------------------------|-----------------|------|
| Tstg   | Storage temperature range    | -65~+150        | °C   |
| Тı     | Maximum junction temperature | 150             | °C   |

<sup>2.</sup>  $I_{INJ(PIN)}$  must not exceed its limit (see Table 4), that is, ensure that  $V_{IN}$  does not exceed its maximum value. If it cannot be guaranteed that  $V_{IN}$  does not exceed its maximum value, it must also be ensured that the external limit  $I_{INJ(PIN)}$  does not exceed its maximum value. When  $V_{IN} > V_{INmax}$ , there is a forward injection current; when  $V_{IN} < V_{SS}$ , there is a reverse injection current.

# **5.3** Working conditions

# **5.3.1** General working conditions

Table 6. General operating conditions

| Symbol             | Parameter                                       |                                               | Condition                       | Minimum value | Maximum value        | Unit |
|--------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------|---------------|----------------------|------|
| f <sub>HCLK</sub>  | Internal AHB clock frequency                    |                                               | -                               | 0             | 72                   |      |
| f <sub>PCLK1</sub> | Internal APB1 clock frequency                   |                                               | -                               | 0             | 36                   | MHz  |
| f <sub>PCLK2</sub> | Internal APB2 clock frequency                   |                                               | -                               | 0             | 72                   |      |
| $V_{ m DD}$        | Standard working voltage                        |                                               | -                               | 2             | 3.6                  |      |
| $V_{DDA}^{(1)}$    | Analog section operating voltage (ADC not used) | Must be                                       | the same as $V_{DD}^{(2)}$      | 2             | 3.6                  |      |
|                    | Analog part operating voltage (using ADC)       |                                               |                                 | 2.4           | 3.6                  |      |
| $V_{BAT}$          | Backup part of the working voltage              |                                               | -                               | 1.8           | 3.6                  | V    |
|                    |                                                 | S                                             | Standard I/O                    | -0.3          | V <sub>DD</sub> +0.3 |      |
| $V_{\mathrm{IN}}$  | I/O input valtage                               | /O input voltage $FT I/O = 2V < V_{DD} < 3.0$ |                                 | -0.3          | 5.5                  |      |
| V IN               | 1/O input voltage                               | 111/0                                         | $V_{DD} = 2V$                   | -0.3          | 5.2                  |      |
|                    |                                                 | BOOT0                                         |                                 | 0             | 5.5                  |      |
|                    |                                                 | LQFP100                                       |                                 | -             | 434                  |      |
| $P_{\mathrm{D}}$   | Power dissipation                               |                                               | LQFP64                          | -             | 444                  | mW   |
| ТD                 | Tower dissipation                               |                                               | LQFP48                          | -             | 363                  |      |
|                    |                                                 |                                               | QFN36                           | -             | 1000                 |      |
|                    |                                                 | Maximu                                        | m power dissipation             | -45           | 105                  |      |
| $T_{A}$            | Ambient temperature                             | Low po                                        | ower dissipation <sup>(4)</sup> | -45           | 105                  | °C   |
| $T_{J}$            | Junction temperature range                      | Ten                                           | nperature label                 | -60           | 150                  |      |

<sup>1.</sup> When using the ADC, see Table 43.

<sup>2.</sup> It is recommended to use the same power supply to power  $V_{DD}$  and  $V_{DDA}$ , and a maximum of 300mV difference between  $V_{DD}$  and  $V_{DDA}$  is allowed during power-up and normal operation.

<sup>3.</sup> If  $T_A$  is lower, higher  $P_D$  values are allowed as long as  $T_J$  does not exceed  $T_J$  max (see Section 1).

<sup>4.</sup> Under lower power dissipation conditions,  $T_A$  can be extended to this range as long as  $T_J$  does not exceed  $T_{Jmax}$  (see Section 1).

# 5.3.2 Operating conditions when powering on and off

The parameters given in the table below are tested under general working conditions.

Table 7. Operating conditions during power-on and power-down

| Symbol           | Parameter                    | Condition | Minimum<br>value | Maximum<br>value | Unit |  |
|------------------|------------------------------|-----------|------------------|------------------|------|--|
| 4                | V <sub>DD</sub> rising rate  |           | 0                | 8                | μs/V |  |
| t <sub>VDD</sub> | V <sub>DD</sub> falling rate | -         | 20               | $\infty$         |      |  |

# **5.3.3** Embedded reset and power control module features

The parameters given in the table below are based on testing at the ambient temperatures and  $V_{\text{DD}}$  supply voltage listed in Table 6.

Table 8. Embedded Reset and Power Control Module Features

| Symbol                              | Parameter                           | Condition                    | Minimum<br>value | Typical<br>value | Maximum value | Unit |
|-------------------------------------|-------------------------------------|------------------------------|------------------|------------------|---------------|------|
|                                     |                                     | PLS[2:0]=000 (rising edge)   | 2.1              | 2.18             | 2.26          | V    |
|                                     |                                     | PLS[2:0]=000 (falling edge)  | 2                | 2.08             | 2.16          | V    |
|                                     |                                     | PLS[2:0]=001 (rising edge)   | 2.19             | 2.28             | 2.37          | V    |
|                                     |                                     | PLS[2:0]=001 (falling edge)  | 2.09             | 2.18             | 2.27          | V    |
|                                     |                                     | PLS[2:0]=010 (rising edge)   | 2.28             | 2.38             | 2.48          | V    |
|                                     |                                     | PLS[2:0]=010 (falling edge)  | 2.18             | 2.28             | 2.38          | V    |
|                                     | D 11                                | PLS[2:0]=011 (rising edge)   | 2.38             | 2.48             | 2.58          | V    |
| 37                                  | Programmable                        | PLS[2:0]=011 (falling edge)  | 2.28             | 2.38             | 2.48          | V    |
| $V_{\mathrm{PVD}}$                  | voltage detector<br>level selection | PLS[2:0]=100 (rising edge)   | 2.47             | 2.58             | 2.69          | V    |
|                                     |                                     | PLS[2:0]=100 (falling edge)  | 2.37             | 2.48             | 2.59          | V    |
|                                     |                                     | PLS[2:0]= 101 (rising edge)  | 2.57             | 2.68             | 2.79          | V    |
|                                     |                                     | PLS[2:0]= 101 (falling edge) | 2.47             | 2.58             | 2.69          | V    |
|                                     |                                     | PLS[2:0]= 110 (rising edge)  | 2.66             | 2.78             | 2.90          | V    |
|                                     |                                     | PLS[2:0]=110 (falling edge)  | 2.56             | 2.68             | 2.80          | V    |
|                                     |                                     | PLS[2:0]=111 (rising edge)   | 2.76             | 2.88             | 3.00          | V    |
|                                     |                                     | PLS[2:0]=111 (falling edge)  | 2.66             | 2.78             | 2.90          | V    |
| V <sub>PVDhyst</sub> <sup>(2)</sup> | PVD hysteresis                      | -                            | -                | 100              | -             | mV   |
| Vnon man                            | Power-on/power-off                  | falling edge                 | 1 8(1)           | 1.88             | 1.96          | V    |
| V <sub>POR/PDR</sub>                | reset threshold                     | rising edge                  | 1.84             | 1.92             | 2.0           | V    |
| V <sub>PVDhyst</sub> <sup>(2)</sup> | PDR hysteresis                      | -                            | -                | 40               | -             | mV   |
| Trsttempo <sup>(2)</sup>            | Reset duration                      | -                            | 1                | 2.5              | 4.5           | ms   |

<sup>1.</sup> Product characteristics are guaranteed by design to the minimum value  $V_{\mbox{\scriptsize POR/PDR}}$ .

 $<sup>2. \ \</sup>mbox{Guaranteed}$  by design, not tested in production.

### 5.3.4 Built-in reference voltage

The parameters given in the table below are based on testing at the ambient temperatures and  $V_{DD}$  supply voltage listed in Table 6.

Table 9. Built-in reference voltage

| Symbol                    | Parameter                                                                  | Condition                                                          | Minimum value | Typical<br>value | Maximum value | Unit |
|---------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|------------------|---------------|------|
|                           |                                                                            | $-45^{\circ}\text{C} < \text{T}_{\text{A}} < +105^{\circ}\text{C}$ | 1.16          | 1.20             | 1.26          | V    |
| Ts_vrefint <sup>(1)</sup> | When reading the internal reference<br>voltage, the ADC's<br>Sampling time | -                                                                  | -             | 5.1              | (2)<br>17.1   | μs   |

- 1. Product characteristics are guaranteed by design to the minimum value VPOR/PDR.
- 2. Guaranteed by design, not tested in production.

## 5.3.5 Supply current characteristics

Current consumption is a comprehensive indicator of multiple parameters and factors, including operating voltage, ambient temperature, load on I/O pins, product software configuration, operating frequency, I/O pin toggle rate, program memory The location and code executed, etc.

The current consumption measurement method is explained in Figure 11.

All run-mode current consumption measurements given in this section are obtained while executing a simplified set of code.

Dhrystone 2.1 code equivalent results.

#### **Maximum current consumption**

The microcontroller is under the following conditions:

- All I/O pins are in input mode and connected to a quiescent level V<sub>DD</sub> or V<sub>SS</sub> (no load).
- All peripherals are turned off unless otherwise noted.
- The access time of the flash memory is adjusted to the frequency of  $f_{HCLK}$  (0 wait cycles when  $0\sim24$  MHz, 0 wait cycles when  $24\sim48$  MHz 1 waiting period, 2 waiting periods when exceeding 48MHz).
- Instruction prefetch function is turned on (tip: this parameter must be set before setting the clock and bus frequency division).
- When peripheral is enabled:  $f_{PCLK1} = f_{HCLK/2}$ ,  $f_{PCLK2} = f_{HCLK}$ .

The parameters given in Table 10, Table 11 and Table 12 are based on testing at the ambient temperature and  $V_{\rm DD}$  supply voltage listed in Table 5.

Table 10. Maximum current consumption in run mode, data processing code running from internal flash memory

| Symbol | Parameter             | Condition                                              | £                         | Ma                | $\mathbf{x}^{(1)}$ | Unit |
|--------|-----------------------|--------------------------------------------------------|---------------------------|-------------------|--------------------|------|
| Symbol | r ai ametei           | Condition                                              | $\mathbf{f}_{	ext{HCLK}}$ | $T_A=85^{\circ}C$ | $T_A=105$ °C       | Omt  |
|        |                       |                                                        | 72MHz                     | 21.5              | 26.88              |      |
|        |                       | External clock, enables all peripherals <sup>(2)</sup> | 48MHz                     | 14.3              | 17.88              |      |
|        |                       |                                                        | 32MHz                     | 10.1              | 12.63              |      |
|        |                       |                                                        | 24MHz                     | 8.6               | 10.75              |      |
|        |                       |                                                        | 16MHz                     | 5.5               | 6.88               |      |
| IDD    | Supply current in run |                                                        | 8MHz                      | 3.0               | 12.63<br>10.75     | A    |
| ממו    | mode                  |                                                        | 72MHz                     | 13.4              | 16.75              | mA   |
|        |                       | E                                                      | 48MHz                     | 11.2              | 14.00              |      |
|        |                       | External clock, turn off                               | 32MHz                     | 6.6               | 8.25               |      |
|        |                       | all<br>peripherals <sup>(2)</sup>                      | 24MHz                     | 5.1               | 6.38               | -    |
|        |                       | peripnerals(2)                                         | 16MHz                     | 3.4               | 4.25               |      |
|        |                       |                                                        | 8MHz                      | 2.0               | 2.50               |      |

- 1. Derived from comprehensive evaluation and not tested in production.
- 2. The external clock is 8MHz, and the PLL is enabled when  $f_{HCLK}$ >8MHz.

Table 11. Maximum Current Consumption in Run Mode, Data Processing Code Running from Internal RAM

| Symbol | Parameter             | Condition                                                    | fhclk | Ma                | $X^{(1)}$          | Unit |    |
|--------|-----------------------|--------------------------------------------------------------|-------|-------------------|--------------------|------|----|
| Symbol | r at affictet         | Condition                                                    | IHCLK | $T_A=85^{\circ}C$ | $T_A=105^{\circ}C$ | Omt  |    |
|        |                       | External clock, enables<br>all<br>peripherals <sup>(2)</sup> | 72MHz | 16.9              | 21.13              |      |    |
|        |                       |                                                              | 48MHz | 12.6              | 15.75              |      |    |
|        |                       |                                                              | 32MHz | 8.0               | 10                 |      |    |
|        |                       |                                                              | 24MHz | 6.0               | 7.5                |      |    |
|        |                       |                                                              | 16MHz | 4.2               | 5.25               |      |    |
| Idd    | Supply current in run |                                                              |       | 8MHz              | 2.6                | 3.25 | mA |
| IDD    | mode                  |                                                              | 72MHz | 7.5               | 9.38               | IIIA |    |
|        |                       |                                                              | 48MHz | 5.9               | 7.38               |      |    |
|        |                       | External clock, turn off                                     | 32MHz | 4.0               | 5.00               |      |    |
|        |                       | all                                                          | 24MHz | 3.5               | 4.38               |      |    |
|        |                       | peripherals <sup>(2)</sup>                                   | 16MHz | 2.8               | 3.50               |      |    |
|        |                       |                                                              | 8MHz  | 1.7               | 2.13               |      |    |

- 1. Based on comprehensive evaluation,  $V_{\text{DDmax}}$  is used in production
- 2. The external clock is 8MHz, and the PLL is enabled when  $f_{\mbox{\scriptsize HCLK}}\!\!>\!\!8\mbox{\scriptsize MHz}.$

Table 12. Maximum current consumption in sleep mode, code running in Flash or RAM

| Crowbal  | Donomoton         | Condition                                             | e                         | Ma            | $\mathbf{x}^{(1)}$            | Unit |  |
|----------|-------------------|-------------------------------------------------------|---------------------------|---------------|-------------------------------|------|--|
| Symbol   | Parameter         | Condition                                             | $\mathbf{f}_{	ext{HCLK}}$ | $T_A = 85$ °C | $T_{A}=105^{\circ} \text{ C}$ | Unit |  |
|          |                   | External clock, enable all peripherals <sup>(2)</sup> | 72MHz                     | 17.1          | 21.38                         |      |  |
|          |                   |                                                       | 48MHz                     | 11.2          | 14.00                         |      |  |
|          |                   |                                                       | 32MHz                     | 8.2           | 10.25                         |      |  |
|          |                   |                                                       | 24MHz                     | 6.9           | 8.63                          | mA   |  |
|          |                   | peripherals                                           | 16MHz                     | 4.2           | 5.25<br>3.25                  |      |  |
| т .      | Supply current in |                                                       | 8MHz                      | 2.6           |                               |      |  |
| $I_{DD}$ | sleep mode        |                                                       | 72MHz                     | 6.8           | 6.8 8.50                      |      |  |
|          |                   | F ( 1111)                                             | 48MHz                     | 3.5           | 4.38                          |      |  |
|          |                   | External clock, turn off all                          | 32MHz                     | 3.1           | 3.88                          |      |  |
|          |                   |                                                       | 24MHz                     | 2.7           | 3.38                          |      |  |
|          |                   | peripherals <sup>(2)</sup>                            | 16MHz                     | 1.9           | 2.38                          |      |  |
|          |                   |                                                       |                           | 8MHz          | 1.2                           | 1.50 |  |

- 1. Based on comprehensive evaluation, tested in production with  $V_{DDmax}$  and peripherals enabled at  $f_{HCLK}$  max.
- 2. The external clock is 8MHz, and the PLL is enabled when  $f_{HCLK} > 8$  MHz.

Table 13. Typical and maximum current consumption in shutdown and standby modes

|                      |                                |                                                                                                                                                 | Typica                    | l value                   | Maxim                 | um value               |      |
|----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------------|------------------------|------|
| Symbol               | Parameter                      | Condition                                                                                                                                       | $V_{DD}/V_{BAT}$ $= 2.4V$ | $V_{DD}/V_{BAT}$ $= 3.3V$ | T <sub>A</sub> = 85°C | T <sub>A</sub> = 105°C | Unit |
|                      | Supply current in              | Regulator is in run mode, low speed and high<br>speed internal RC<br>Oscillator and high-speed oscillator are off<br>(no independent watchdog)  | 22.7                      | 23.4                      | 300                   | 385                    |      |
| 1                    | shutdown mode                  | The regulator is in low power mode, low speed and high speed internal RC oscillator and high-speed oscillator are off (no independent watchdog) | 9.1                       | 10.3                      | 260                   | 340                    |      |
| $I_{DD}$             |                                | The low speed internal RC oscillator and independent watchdog are on On state                                                                   | 2.4                       | 3.4                       | ı                     | ı                      | μΑ   |
|                      | Supply current in standby mode | The low-speed internal RC oscillator is on and viewed independently  Door dog is off                                                            | 2.3                       | 3.3                       | ı                     | ı                      |      |
|                      |                                | The low-speed internal RC oscillator and independent watchdog are turned off status, the low-speed oscillator and RTC are off                   | 1.5                       | 2.0                       | 4                     | 6                      |      |
| I <sub>DD_VBAT</sub> | Backup area supply current     | Low speed oscillator and RTC are on                                                                                                             | 1.1                       | 1.4                       | 1.9(2)                | 3.2                    |      |

<sup>1.</sup> Typical values are measured at  $T_A = 25$ °C.

#### **Typical current consumption**

The MCU is under the following conditions:

- All I/O pins are in input mode and connected to a quiescent level  $V_{DD}$  or  $V_{SS}$  (no load).
- All peripherals are turned off unless otherwise noted.
- The access time of the flash memory is adjusted to the frequency of  $f_{HCLK}$  (0 wait cycles when 0 ~ 24 MHz, 1 wait cycle when 24 ~ 48 MHz, and 2 wait cycles when it exceeds 48 MHz).
- Ambient temperature and V<sub>DD</sub> supply voltage conditions are listed in Table 6.
- Instruction prefetch function is turned on (tip: this parameter must be set before setting the clock and bus frequency division). When turning on peripherals:
- $f_{PCLK1} = f_{HCLK}/4$ ,  $f_{PCLK2} = f_{HCLK}/2$ ,  $f_{ADCCLK} = f_{PCLK2}/4$ .

Table 14. Typical current consumption in Run mode, data processing code running from internal Flash

| Combal            | Parameter         | Condition                     | Condition from |                            | Typical                  | Unit |  |
|-------------------|-------------------|-------------------------------|----------------|----------------------------|--------------------------|------|--|
| Symbol            |                   |                               | fHCLK          | Enable all peripherals (2) | Turn off all peripherals | Unit |  |
|                   |                   | External clock <sup>(3)</sup> | 72MHz          | 20.9                       | 11.9                     |      |  |
| т                 | Supply current in |                               | 48MHz          | 14.2                       | 8.3                      | A    |  |
| $I_{\mathrm{DD}}$ | run mode          |                               | 24MHz          | 7.8                        | 4.6                      | mA   |  |
|                   |                   |                               | 8MHz           | 3.2                        | 2.1                      |      |  |

<sup>1.</sup> Typical values are measured at  $T_A = 25$ °C and  $V_{DD} = 3.3$  V.

3. The external clock is 8MHz, and the PLL is enabled when  $f_{\text{HCLK}}{>}\,8$  MHz.

<sup>2.</sup> Derived from comprehensive evaluation and not tested in production.

<sup>2.</sup> Each ADC in the analog section adds an additional 0.8 mA current consumption. In the application environment, this part of the current will only increase when the ADC is turned on (the ADON bit of the ADC\_CR2 register is set).

Table 15. Typical current consumption in run mode, data processing code running from internal RAM

| Symbol                         | Parameter         | Condition                     | $f_{ m HCLK}$ | Typical                    | value <sup>(1)</sup>     | Unit   |
|--------------------------------|-------------------|-------------------------------|---------------|----------------------------|--------------------------|--------|
| Symbol                         | r ar ameter       |                               |               | Enable all peripherals (2) | Turn off all peripherals | S CIII |
| IDD Supply current in run mode |                   | 72MHz                         | 17.8          | 8.6                        |                          |        |
|                                | Supply current in | External clock <sup>(3)</sup> | 48MHz         | 13.0                       | 7.6                      |        |
|                                |                   |                               | 24MHz         | 7.2                        | 4.3                      | mA     |
|                                |                   |                               | 8MHz          | 3.4                        | 2.4                      |        |

- 1. Typical values are measured at  $T_A = 25$ °C and  $V_{DD} = 3.3$  V.
- 2. Each ADC in the analog section adds an additional 0.8mA current consumption. In the application environment, this part of the current will only increase when the ADC is turned on (the ADON bit of the ADC\_CR2 register is set).
- 3. The external clock is 8MHz, and the PLL is enabled when f<sub>HCLK</sub> > 8 MHz.

Table 16. Typical current consumption in sleep mode with data processing code running from internal Flash or RAM

| Symbol | Parameter                          | Condition                     | f <sub>HCLK</sub> | Typical v  Enable all peripherals <sup>(2)</sup> |     | Unit |
|--------|------------------------------------|-------------------------------|-------------------|--------------------------------------------------|-----|------|
| IDD    | Power supply in sleep<br>mode flow | External clock <sup>(3)</sup> | 72MHz             | 15.1                                             | 5.4 | mA   |

- 1. Typical values are measured at  $T_A = 25$  °C and  $V_{DD} = 3.3 \ V$ .
- 2. Each ADC in the analog section adds an additional 0.8 mA current consumption. In the application environment, this part of the current will only increase when the ADC is turned on (the ADON bit of the ADC\_CR2 register is set).
- 3. The external clock is 8 MHz, and the PLL is enabled when  $f_{HCLK} > 8$  MHz.

#### **Built-in peripheral current consumption**

The current consumption of the built-in peripherals is listed in Table 17. The operating conditions of the MCU are as follows:

- All I/O pins are in input mode and connected to a quiescent level  $V_{DD}$  or  $V_{SS}$  (no load).
- All peripherals are turned off unless otherwise noted.
- The values given are calculated by measuring the current consumption
- Turn off clocks to all peripherals
- Only turn on the clock of one peripheral
- Ambient temperature and VDD supply voltage conditions are listed in Table 4.

Table 17. Current consumption of built-in peripherals<sup>(1)</sup>

| Built-in | peripherals       | Typical power consumption at 25°C | Unit | Built-i | n peripherals       | Typical power consumption at 25°C | Unit |
|----------|-------------------|-----------------------------------|------|---------|---------------------|-----------------------------------|------|
|          | TIM2              | 1.2                               |      | APB2    | GPIOA               | 0.47                              |      |
|          | TIM3              | 1.2                               | mA   |         | GPIOB               | 0.47                              | mA   |
|          | TIM4              | 0.9                               |      |         | GPIOC               | 0.47                              |      |
|          | SPI2              | 0.2                               |      |         | GPIOD               | 0.47                              |      |
|          | USART2            | 0.35                              |      |         | GPIOE               | 0.47                              |      |
| APB1     | USART3            | 0.35                              |      |         | ADC1 <sup>(2)</sup> | 1.81                              |      |
|          | I <sup>2</sup> C1 | 0.39                              |      |         | ADC2                | 1.78                              |      |
|          | I <sup>2</sup> C2 | 0.39                              |      |         | TIM1                | 1.6                               |      |
|          | USB               | 0.65                              |      |         | SPI1                | 0.43                              |      |
|          | CAN               | 0.72                              |      |         | USART1              | 0.85                              |      |

- $1.\ f_{HCLK} = 72MHz,\ f_{APB1} = f_{HCLK}/2,\ f_{APB2} = f_{HCLK},\ the\ prescaler\ coefficient\ of\ each\ peripheral\ is\ the\ default\ value.$
- 2. Special conditions for ADC: fhclk=56MHz, fAPB1 = fhclk/2, fapb2 = fhclk, fadcclk = fapb2/4, ADON=1 in ADC\_CR2 register.

## 5.3.6 External clock source characteristics

High-speed external user clock generated from external oscillator source the characteristic parameters given in the following table are measured using a high-speed external clock source, and the ambient temperature and supply voltage comply with the conditions of Table 6.

| Symbol                     | Parameter                                    | Condition                        | Minimum value | Typical value | Maximum value | Unit |
|----------------------------|----------------------------------------------|----------------------------------|---------------|---------------|---------------|------|
| f <sub>HSE_ext</sub>       | User external clock frequency <sup>(1)</sup> |                                  | 1             | 8             | 25            | MHz  |
| V <sub>HSEH</sub>          | OSC_IN input pin high level voltage          |                                  | 2.2           | -             | 3.3           |      |
| V <sub>HSEL</sub>          | OSC_IN input pin low level voltage           |                                  | 0             | -             | 2.2           | V    |
| $t_{w(HSE)}$ $t_{w(HSE)}$  | OSC_IN high or low time(1)                   | _                                | 5             | -             | -             |      |
| $t_{r(HSE)} \\ t_{f(HSE)}$ | OSC_IN rise or fall time(1)                  |                                  | -             | -             | 20            | ns   |
| C <sub>in(HSE)</sub>       | OSC_IN input capacitive reactance            | -                                | -             | 5             | -             | pF   |
| DuCy(HSE)                  | Duty cycle                                   | -                                | 45            | 50            | 55            | %    |
| $I_{ m L}$                 | OSC_IN input leakage current                 | $V_{SS} \leq V_{IN} \leq V_{DD}$ |               | 0.3           | ±1            | μA   |

Table 18. High-speed external user clock characteristics

<sup>1.</sup> Guaranteed by design, not tested in production.

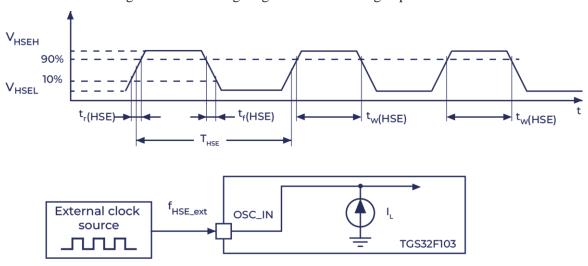



Figure 12. AC timing diagram of external high-speed clock source

## Low-speed external user clock generated from external oscillator source

The characteristics parameters given in the following table are measured using a low-speed external clock source, and the ambient temperature and supply voltage comply with the conditions of Table 6.

| Symbol                                                  | Parameter                                    | Condition                                    | Minimum value | Typical value | Maximum value | Unit |
|---------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------|---------------|---------------|------|
| $f_{LSE\_ext}$                                          | User external clock frequency <sup>(1)</sup> |                                              | 0             | 32.768        | 4000          | KHz  |
| V <sub>LSEH</sub>                                       | OSC32_IN input pin high level voltage        |                                              | 1.8           |               | 3.3           | V    |
| V <sub>LSEL</sub>                                       | OSC32_IN input pin low level voltage         |                                              | 0             |               | 1.7           | V    |
| $\begin{array}{c} t_{w(LSE)} \\ t_{w(LSE)} \end{array}$ | OSC32_IN high or low time <sup>(1)</sup>     |                                              | 450           |               |               |      |
| $\begin{array}{c} t_{r(LSE)} \\ t_{f(LSE)} \end{array}$ | OSC32_IN rise or fall time <sup>(1)</sup>    |                                              |               |               | 50            | ns   |
| Cin(LSE)                                                | OSC32_IN input capacitive reactance          |                                              |               | 5             |               | pF   |
| DuCy <sub>(LSE)</sub>                                   | Duty cycle                                   |                                              | 30            | 50            | 70            | %    |
| $I_{L}$                                                 | OSC32_IN input leakage current               | $V_{SS}\!\!\leq\!\!V_{IN}\!\!\leq\!\!V_{DD}$ |               | -0.4          | ±1            | μΑ   |

Table 19. Low-speed external user clock characteristics

<sup>1.</sup> Guaranteed by design, not tested in production.

V<sub>LSEL</sub>

90%

V<sub>LSEL</sub>

10%

t<sub>r</sub>(LSE)

t<sub>w</sub>(LSE)

t<sub>w</sub>(LSE)

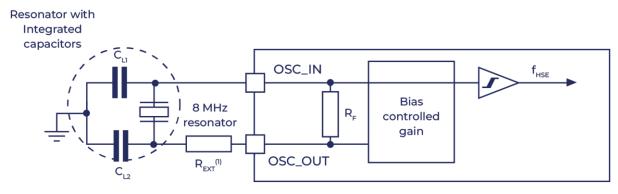
t<sub>w</sub>(LSE)

t<sub>w</sub>(LSE)

T<sub>CS32F103</sub>

Figure 13. AC timing diagram of external low-speed clock source

## High-speed external clock generated using a crystal/ceramic resonator


The high-speed external clock (HSE) can be generated using a  $4 \sim 16$  MHz crystal/ceramic resonator oscillator. The information given in this section is based on a comprehensive characteristic evaluation using typical external components listed in the table below. In the application, the resonator and load capacitor must be placed as close as possible to the oscillator pins to reduce output distortion and settling time at startup.

| Symbol                                            | Parameter                                                                                       | Condition                                     | Minimum value | Typical value | Maximum<br>value | Unit |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|---------------|------------------|------|
| fosc_in                                           | Oscillator frequency                                                                            | -                                             | 4             | 8             | 16               | MHz  |
| $R_{\mathrm{F}}$                                  | feedback resistor                                                                               | -                                             | -             | 200           | -                | kΩ   |
| C <sub>L1</sub><br>C <sub>L2</sub> <sup>(3)</sup> | Recommended load capacitance<br>corresponds to<br>Crystal Series Resistance (RS) <sup>(4)</sup> | Rs= 30Ω                                       | -             | 30            | -                | pF   |
| $\mathbf{i}_2$                                    | HSE drive current                                                                               | $V_{DD}$ =3.3V, $V_{IN}$ = $V_{SS}$ 30pF load | -             | 1             | 1                | mA   |
| $g_{\rm m}$                                       | Oscillator transconductance                                                                     | Start up                                      | 25            | -             | -                | mA/V |
| t <sub>SU(HSE)</sub> (5)                          | Start time                                                                                      | $V_{DD}$ stable                               | -             | 2             | -                | ms   |

Table 20 HSE 4~16MHz oscillator characteristics<sup>(1)(2)</sup>

- 1. Characteristic parameters of the resonator are given by the crystal/ceramic resonator manufacturer.
- 2. Derived from comprehensive evaluation and not tested in production.
- 3. For  $C_{L1}$  and  $C_{L2}$ , it is recommended to use high-quality ceramic capacitors (typical value) between 5 pF and 25 pF designed for high-frequency applications, and select a crystal or resonator that meets the requirements. Typically  $C_{L1}$  and  $C_{L2}$  have the same parameters. Crystal manufacturers usually specify the load capacitance as a serial combination of  $C_{L1}$  and  $C_{L2}$ . When selecting  $C_{L1}$  and  $C_{L2}$ , the capacitive reactance of the PCB and MCU pins should be taken into consideration (the capacitance between the pins and the PCB board can be roughly estimated as 10pF).
- 4. The relatively low RF resistance value provides protection from problems caused by use in humid environments where leakage and bias conditions change. However, when the MCU is used in harsh humid conditions, this parameter needs to be taken into consideration during design.
- $5.\ t_{SU(HSE)}$  is the startup time, which is the time from when the software enables HSE until a stable 8MHz oscillation is obtained. This value is measured on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

Figure 14. Typical application using 8MHz crystal



1. The R<sub>EXT</sub> value is determined by the characteristics of the crystal. Typical values are 5 to 6 times RS.

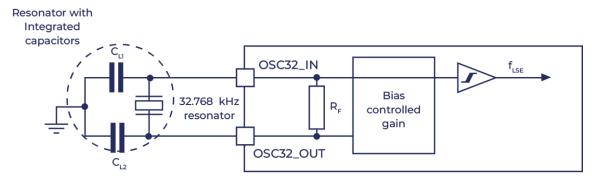
# Low speed external clock generated using a crystal/ceramic resonator

The low-speed external clock (LSE) can be generated using a 32.768 kHz crystal/ceramic resonator oscillator. The information given in this section is based on a comprehensive characterization evaluation using typical external components listed in Table 21. In the application, the resonator and load capacitor must be as close as possible to the oscillator pins to reduce output distortion and settling time at startup.

Note: For  $C_{L1}$  and  $C_{L2}$ , it is recommended to use high-quality ceramic capacitors between 5 pF ~ 15 pF and select a crystal or resonator that meets the requirements. Typically,  $C_{L1}$  and  $C_{L2}$  have the same parameters. Crystal manufacturers usually specify the load capacitance as a serial combination of  $C_{L1}$  and  $C_{L2}$ .

The load capacitance  $C_L$  is calculated by the following formula:  $C_L = C_{L1}$ .

Warning: To avoid exceeding the maximum value of  $C_{L1}$  and  $C_{L2}$  (15 pF), it is strongly recommended to use resonators with a load capacitance of  $C_L \le 7$  pF. Resonators with a load capacitance of 12.5 pF cannot be used.


For example: If a resonator with load capacitance  $C_L = 6$  pF is selected and  $C_{stray} = 2$  pF, then  $C_{L1} = C_{L2} = 8$  pF.

| Symbol                   | Parameter                                                                                       | Condition                        | Minimum value | Typical value | Maximum value | Unit |
|--------------------------|-------------------------------------------------------------------------------------------------|----------------------------------|---------------|---------------|---------------|------|
| $R_{\mathrm{F}}$         | Feedback resistor                                                                               | -                                | -             | 5             | -             | ΜΩ   |
| $C_{L1} \\ C_{L2}^{(2)}$ | Recommended load capacitance<br>corresponds to<br>Crystal Series Resistance (RS) <sup>(3)</sup> | $R_S = 30 \; k\Omega$            | -             | -             | 15            | pF   |
| $I_2$                    | LSE drive current                                                                               | $V_{DD} = 3.3V, V_{IN} = V_{SS}$ | -             | -             | 1.4           | μΑ   |
| $g_{\rm m}$              | Oscillator transconductance                                                                     | -                                | 5             | -             | -             | μA/V |
| t <sub>SU(LSE)</sub> (4) | Start time                                                                                      | V <sub>DD</sub> stable           |               | 3             | -             | S    |

Table 21. LSE oscillator characteristics  $(f_{LSE} = 32.768 \text{ kHz})^{(1)}$ 

- 1. Derived from comprehensive evaluation and not tested in production.
- 2. See the Caution and Warning paragraphs above this form.
- 3. Choose a high-quality oscillator with a smaller RS value (such as MSIV-TIN32.768kHz) to optimize current consumption.
- $4.\ t_{SU(HSE)}$  is the startup time, which is measured from when the software enables HSE until a stable 8MHz oscillation is obtained. This value is measured on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

Figure 15. Typical application using 32.768kH crystal



#### 5.3.7 Internal clock source characteristics

The characteristic parameters given in the table below were measured using ambient temperature and supply voltage conditions in accordance with Table 6.

High Speed Internal (HSI) RC Oscillator

| Symbol               | Parameter                        | Condition                    | Minimum value | Typical<br>value | Maximum<br>value | Unit |
|----------------------|----------------------------------|------------------------------|---------------|------------------|------------------|------|
| $f_{\mathrm{HSI}}$   | Frequency                        |                              | -             | 8                | -                | MHz  |
|                      | HELO SILINAS ASSESSED            | T <sub>A</sub> = -45 ~ 105°C | -2            | -                | 2.5              | %    |
| ACC <sub>HSI</sub>   |                                  | T <sub>A</sub> = -10 ~ 85°C  | -1.5          | -                | 2.2              | %    |
| ACCHSI               | HSI Oscillator Accuracy          | $T_A = 0 \sim 70^{\circ} C$  | -1.3          | -                | 2                | %    |
|                      |                                  | $T_A=25^{\circ}C$            | -1.1          | -                | 1.8              | %    |
| tsu(HSI)             | HSI oscillator startup time      |                              | 1             | -                | 2                | μs   |
| $I_{\text{DD(HSI)}}$ | HSI Oscillator Power Consumption |                              | -             | 80               | 100              | μΑ   |

- 1.  $V_{DD} = 3.3 \text{ V}$ ,  $T_A = -45 \sim 105^{\circ}\text{C}$ , unless otherwise specified.
- 2. Guaranteed by design, not tested in production.

## Low Speed Internal (LSI) RC Oscillator

Table 23. LSI oscillator characteristics<sup>(1)</sup>

| Symbol                   | Parameter                        | Minimum value | Typical value | Maximum value | Unit |
|--------------------------|----------------------------------|---------------|---------------|---------------|------|
| $f_{LSI}^{(2)}$          | Frequency                        | 30            | 40            | 60            | kHz  |
| t <sub>SU(LSI)</sub> (3) | LSI oscillator startup time      |               |               | 85            | μs   |
| I <sub>DD(LSI)</sub> (3) | LSI oscillator power consumption |               | 0.65          | 1.2           | μΑ   |

- 1.  $V_{DD} = 3.3 \text{ V}$ ,  $T_A = -45 \sim 105 ^{\circ}\text{C}$ , unless otherwise specified.
- 2. Derived from comprehensive evaluation and not tested in production.
- 3. Guaranteed by design, not tested in production.

## Time to wake up from low power mode

The wake-up times listed in Table 24 were measured during the wake-up phase of an 8MHz HSI RC oscillator. The clock source used when waking up depends on the current operating mode:

- Stop or Standby mode: clock source is RC oscillator
- Sleep mode: The clock source is the clock used when entering sleep mode

All times are measured using ambient temperature and supply voltage conditions in accordance with Table 6.

Table 24. Wake-up time for low power modes

| Symbol                   | Parameter                                                                             | Condition                                                                                                                                             | Typical value | Unit |
|--------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| t <sub>WUSLEEP</sub> (1) | Wake up from sleep mode                                                               | Wake up using HSI RC clock                                                                                                                            | 1.7           |      |
| (1)                      | Wake up from shutdown mode<br>(voltage regulation<br>(the machine is in run mode)     | HSI RC clock wake-up = 2μs                                                                                                                            | 2.6           |      |
| twustop                  | Wake up from shutdown mode<br>(voltage regulation<br>The device is in low power mode) | $\label{eq:HSIRC} \begin{aligned} \text{HSI RC clock wake-up} &= 2\mu s \\ \text{Regulator wake-up time from low-power mode} &= 5\mu s \end{aligned}$ | 5.1           | μs   |
| t <sub>WUSTDBY</sub> (3) | Wake up from standby mode                                                             | HSI RC clock wake-up = $2\mu s$<br>Regulator wake-up time from shutdown mode = $38\mu s$                                                              | 52            |      |

<sup>1.</sup> The wake-up time is measured from the start of the wake-up event to the user program reading the first instruction.

#### 5.3.8 PLL characteristics

The parameters listed in Table 25 were measured using ambient temperature and supply voltage conditions consistent with Table 6.

Table 25. PLL Characteristics

| Crowbal  | Downwaton                      |               |               | Unit          |      |
|----------|--------------------------------|---------------|---------------|---------------|------|
| Symbol   | Parameter                      | Minimum value | Typical value | Maximum value | Unit |
| form     | PLL input clock <sup>(2)</sup> | 1             | 8.0           | 25            | MHz  |
| fpll_in  | PLL input clock duty cycle     | 40            | 50            | 60            | %    |
| fpll_out | PLL multiplied output clock    | 16            |               | 72            | MHz  |
| tlock    | PLL phase lock time            |               | 43            | 200           | μs   |

<sup>1.</sup> Derived from comprehensive evaluation and not tested in production.

## 5.3.9 Storage characteristics

Flash memory

Unless otherwise stated, all characteristic parameters are obtained at  $T_A$ = -45 ~ 105°C.

Table 26. Flash memory characteristics

| Symbol      | Parameter                 | Condition                                                            | Minimum value | Typical<br>value | Maximum value | Unit         |
|-------------|---------------------------|----------------------------------------------------------------------|---------------|------------------|---------------|--------------|
| tprog       | 16-bit programming time   | $T_{A} = -45 \sim 105^{\circ} C$                                     | -             | -                | 20            | μs           |
| terase      | Page (1K Byte) erase time | $T_{A} = -45 \sim 105^{\circ} C$                                     | -             | -                | 2             | <b>***</b> C |
| $t_{ m ME}$ | Whole chip erase time     | $T_A = -45 \sim 105^{\circ} C$                                       | -             | -                | 10            | ms           |
|             |                           | Read mode, $f_{HCLK}$ =72MHz, 2 wait cycles, $V_{DD}$ =3.3V          | -             | -                | 21.6          | mA           |
| $I_{DD}$    | Supply current            | write/erase mode,<br>f <sub>HCLK</sub> =72MHz, V <sub>DD</sub> =3.3V | -             | -                | 3             | ША           |
|             |                           | Standby mode, V <sub>DD</sub> =3.3~3.6V                              | -             | -                | 1             | μΑ           |

<sup>1.</sup> Guaranteed by design, not tested in production.

Table 27. Flash memory life and data retention period

| Symbol           | Parameter             | Condition                     | Minimum<br>value | Typical<br>value | Maximum<br>value | Unit               |
|------------------|-----------------------|-------------------------------|------------------|------------------|------------------|--------------------|
| N <sub>END</sub> | Life                  | $T_A = -45 \sim 105^{\circ}C$ | 100              | -                | -                | Thousands of times |
| $t_{RET}$        | Data retention period | $T_A = -45 \sim 105^{\circ}C$ | 10               | -                | -                | Year               |

<sup>1.</sup> Derived from comprehensive evaluation and not tested in production.

<sup>2.</sup> It is necessary to pay attention to using the correct frequency multiplication factor so that f<sub>PLL\_OUT</sub> is within the allowable range according to the PLL input clock frequency.

#### 5.3.10 EMC characteristics

Sensitivity testing is done on a sample basis during a comprehensive evaluation of the product.

#### Functional EMS (Electromagnetic Susceptibility)

When running a simple application (blinking 2 LEDs via the I/O port), the test sample is subjected to 2 types of electromagnetic interference until an error is generated, which is indicated by a blinking LED.

- Electrostatic discharge (ESD) (positive and negative discharge) is applied to all pins of the chip until a functional error occurs. This test meets IEC 1000-4-2 standard.
- $\bullet$  FTB: Apply a burst of voltage transients (forward and reverse) through a 100 pF capacitor on  $V_{DD}$  and VSS until a functional error occurs. This test complies with IEC 1000-4-4 standard.

A chip reset can restore the system to normal operation. The test results are listed in the table below.

Symbol **Parameter** Condition Level/type  $V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ }^{\circ}\text{C},$ The voltage limit applied to any I/O pin, causing V<sub>FESD</sub> 2Bmalfunction.  $f_{HCLK} = 72$  MHz. Conforms to IEC 1000-4-2 Applied through 100pF capacitors on V<sub>DD</sub> and V<sub>SS</sub>,  $V_{DD} = 3.3V, T_A = +25 \, ^{\circ}C,$  $V_{\text{EFTB}}$ resulting in power 4A  $f_{HCLK} = 72$  MHz. Conforms to IEC 1000-4-4 erroneous transient burst voltage limit

Table 28. EMS characteristics

## **Designing Robust Software to Avoid Noise Problems**

EMC evaluation and optimization at the device level is performed in a typical application environment. It should be noted that good EMC performance is closely related to the user application and specific software. Therefore, it is recommended that users perform EMC optimization on the software and conduct EMC-related certification tests.

#### **Software recommendations**

The software process must include control of program runaway, such as:

- Corrupted program counter
- Unexpected reset
- Critical data is corrupted (control registers, etc...)

# **Testing before certification**

Many common failures (unexpected resets and program counter corruption) can be reproduced by artificially introducing a low level on NRST or a low level on the crystal pin for 1 second.

When conducting ESD testing, voltages that exceed application requirements can be applied directly to the chip. Where unexpected actions are detected, the software needs to be strengthened to prevent unrecoverable errors from occurring.

#### **Electromagnetic Interference (EMI)**

Monitor the electromagnetic fields emitted by the chip while running a simple application (blinking 2 LEDs via the I/O port). This emission test complies with the SAE J1752/3 standard, which specifies loading of the test board and pins.

Table 29. EMI Characteristics

| Symbol            | Parameter | Condition                                               | Monitored frequency | Maximum val | lue (f <sub>HSE</sub> /f <sub>HCLK</sub> ) | Unit |
|-------------------|-----------|---------------------------------------------------------|---------------------|-------------|--------------------------------------------|------|
| Symbol I arameter |           | Contaition                                              | band                | 8/48MHz     | 8/72MHz                                    | Chit |
|                   |           | V 22V T 250G LOEDIOO                                    | 0.1~30MHz           | 12          | 12                                         |      |
| C                 |           | V <sub>DD</sub> = 3.3 V, T <sub>A</sub> = 25°C, LQFP100 | 30~130MHz           | 22          | 19                                         | dΒμV |
| Semi              | Peak      | package, compliant with IEC 61967-2                     | 130MHz~1GHz         | 23          | 29                                         |      |
|                   |           | 01907-2                                                 | SAM EMI level       | 4           | 4                                          | -    |

## **5.3.11** Absolute maximum value (electrical sensitivity)

Based on three different tests (ESD, LU), using specific measurement methods, the chip is strength tested to determine its performance in terms of electrical susceptibility.

## Electrostatic discharge (ESD)

Electrostatic discharge (a positive pulse followed by a negative pulse after one second) is applied to all pins of all samples. The size of the sample is related to the number of power supply pins on the chip (3 pieces  $\times$  (n+1) power supply pins). foot). This test complies with JESD22-A114/C101 standard.

Table 30. ESD absolute maximum values

| Symbol                | Parameter                                                  | Condition                       | Type | Max <sup>(1)</sup> | Unit |
|-----------------------|------------------------------------------------------------|---------------------------------|------|--------------------|------|
| V <sub>ESD(HBM)</sub> | Electrostatic discharge voltage (human body model)         | T = +25 °C, per JESD22-<br>A114 | 2    | 2000               | V    |
| V <sub>ESD(CDM)</sub> | Electrostatic discharge voltage (charging equipment model) | T = +25 °C, per JESD22-<br>C101 | II   | 500                | v    |

<sup>1.</sup> Derived from comprehensive evaluation and not tested in production.

#### Static latch

To evaluate latch performance, 2 complementary static latch tests were performed on 6 samples:

- Provide supply voltage beyond the limit for each power pin.
- Inject current on every input, output, and configurable I/O pin. This test complies with the EIA/JESD 78E integrated circuit latch-up standard.

Table 31. Electrical sensitivity

| Symbol           | Parameter          | Condition               | Туре      |
|------------------|--------------------|-------------------------|-----------|
| $L_{\mathrm{U}}$ | Static latch class | T = +25 °C, per JESD78E | Class I A |

### 5.3.12 I/O port characteristics

Universal input/output features

Unless otherwise stated, the parameters listed in the table below are measured according to the conditions in Table 6. All I/O ports are CMOS and TTL.

Table 32. I/O static characteristics

| Symbol          | Parameter                                                                              | Condition                                             | Minimum value                          | Typical value | Maximum value                       | Unit |  |
|-----------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|---------------|-------------------------------------|------|--|
| V <sub>IL</sub> | low level input voltage                                                                | Standard I/O pin, input low level voltage             | -                                      | -             | $0.28 \times (V_{DD}-2V) + 0.8V$    | V    |  |
|                 |                                                                                        | FT I/O <sup>(1)</sup> pin, input low level voltage    | -                                      | -             | $0.32 \times (V_{DD} - 2V) + 0.75V$ |      |  |
|                 |                                                                                        | All I/O ports except<br>BTOOT0                        | -                                      | -             | $0.35~V_{DD}$                       |      |  |
| V <sub>IH</sub> | High level input voltage                                                               | Standard I/O pin, input<br>high power<br>flat voltage | 0.41 × (V <sub>DD</sub> -2V)<br>+ 1.3V | ı             | -                                   |      |  |
|                 |                                                                                        | FT I/O pin <sup>(1)</sup> , input high level voltage  | $0.42 \times (V_{DD}-2V) + 1V$         | ı             | -                                   |      |  |
|                 |                                                                                        | All I/O ports except<br>BTOOT0                        | 0.65 V <sub>DD</sub> <sup>(2)</sup>    | -             | -                                   |      |  |
| Vhys            | Standard I/O Pin Schmidt<br>Trigger voltage<br>hysteresis <sup>(2)</sup>               | -                                                     | 200                                    | 1             | -                                   | mV   |  |
|                 | 5V Tolerant I/O Pin<br>Schmitt Touch<br>Generator voltage<br>hysteresis <sup>(2)</sup> | -                                                     | 5% V <sub>DD</sub> <sup>(3)</sup>      | -             | -                                   | -    |  |
| $I_{ m lkg}$    | Input leakage current <sup>(4)</sup>                                                   | $V_{SS} \leq V_{IN} \leq V_{DD}$ Standard I/O ports   | -                                      | ı             | ±1                                  | μΑ   |  |
|                 |                                                                                        | $V_{IN} = 5 \text{ V},$ 5 V tolerant port             | -                                      | -             | 3                                   |      |  |
| R <sub>PU</sub> | Weak pull-up equivalent resistance <sup>(5)</sup>                                      | $V_{\rm IN} = V_{\rm SS}$                             | 30                                     | 44            | 50                                  | kΩ   |  |
| R <sub>PD</sub> | Weak pull-down equivalent resistance <sup>(5)</sup>                                    | $V_{\rm IN} = V_{\rm DD}$                             | 30                                     | 44            | 50                                  |      |  |
| $C_{IO}$        | Capacitance of I/O pins                                                                | -                                                     | -                                      | 5             | -                                   | pF   |  |

<sup>1.</sup> FT = 5 V tolerance.

- 2. Hysteresis voltage of Schmitt trigger switching level. Derived from comprehensive evaluation and not tested in production.
- 3. Voltage is at least 100 mV.
- 4. If there is reverse current flow in adjacent pins, the leakage current may be higher than the maximum value.
- 5. The pull-up and pull-down resistors are designed as a real resistor in series with a switchable PMOS/NMOS implementation. The resistance of this PMON/NMOS switch is very small (about 10%).

All I/O ports are CMOS and TTL compatible (no software configuration required), and their features take into account the most stringent CMOS process or TTL parameters:

- For V<sub>IH</sub>:
- If  $V_{DD}$  is between [2.00 V ~ 3.08 V]; use CMOS characteristics but include TTL.
- If  $V_{DD}$  is between [3.08 V ~ 3.60 V]; use TTL feature but include CMOS.
- For V<sub>IL</sub>:
- If  $V_{DD}$  is between [2.00 V ~ 2.28 V]; use TTL feature but include CMOS.

- If  $V_{DD}$  is between [2.28 V ~ 3.60 V]; use CMOS characteristics but include TTL.

## **Output drive current**

GPIOs (General Purpose Input/Output Ports) can sink or source up to +/-8 mA, and sink +20 mA (loosely V). In the user's application, the number of I/O pins must be such that the drive current does not exceed the absolute maximum ratings given in Section 5.2:

- The sum of the current drawn by all I/O ports from  $V_{DD}$ , plus the maximum operating current drawn by the MCU on  $V_{DD}$ , cannot exceed the absolute maximum rating  $I_{VDD}$  (see Table 4).
- The sum of the currents drawn by all I/O ports and drawn from  $V_{DD}$ , plus the maximum operating current drawn by the MCU on  $V_{DD}$ , cannot exceed the absolute maximum ratings  $I_{VSS}$  (see Table 4).

# **Output voltage**

Unless otherwise noted, the parameters listed in Table 33 were measured using ambient temperature and  $V_{DD}$  supply voltage conditions consistent with Table 6. All I/O ports are CMOS and TTL compatible.

Table 33. Output voltage characteristics

| Symbol                            | Parameter                                                      | Condition                                                           | Minimum value        | Maximum value | Unit |
|-----------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------|---------------|------|
| Vol <sup>(1)</sup>                | Output low level when 8 pins sink current at the same time     | CMOS port, $I_{IO}$ =+8mA 2.7V <                                    | -                    | 0.4           | V    |
| V <sub>OH</sub> <sup>(2)</sup>    | Output high level, when 8 pins output current at the same time | $V_{DD}$ < 3.6 $V$                                                  | V <sub>DD</sub> -0.4 | -             |      |
| Vol <sup>(1)</sup>                | Output low level when 8 pins sink current at the same time     | TLL port, $I_{IO} = +8mA \ 2.7V <$                                  | -                    | 0.4           |      |
| V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level, when 8 pins output current at the same time | $V_{DD}$ < 3.6V                                                     | 2.4                  |               |      |
| $V_{OL}^{(1)(3)}$                 | Output low level when 8 pins sink current at the same time     | $I_{IO} = +20 \text{mA } 2.7 \text{V} < V_{DD} < 3.6 \text{V}$      | -                    | 1.3           |      |
| V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level, when 8 pins output current at the same time | $10 = \pm 20 \text{ mA} 2.7 \text{ V} < \text{VDD} < 3.0 \text{ V}$ | 2.4                  | -             |      |
| V <sub>OL</sub> <sup>(1)(3)</sup> | Output low level when 8 pins sink current at the same time     | $I_{IO} = +6mA \ 2V < V_{DD} < 2.7V$                                | -                    | 0.4           |      |
| V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level, when 8 pins output current at the same time |                                                                     | V <sub>DD</sub> -0.4 | -             |      |

<sup>1.</sup> The current IIO drawn by the chip must always comply with the absolute maximum ratings given in Table 4, and the sum of IIO (all I/O pins and control pins) must not exceed IVSS.

<sup>2.</sup> The current IIO output by the chip must always comply with the absolute maximum ratings given in Table 4, and the sum of IIO (all I/O pins and control pins) cannot exceed IVDD.

<sup>3.</sup> Derived from comprehensive evaluation and not tested in production.

## Input and output AC characteristics

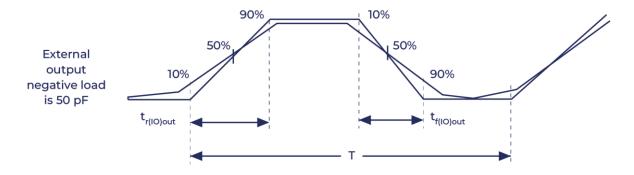

The definitions and values of the input and output AC characteristics are given in Figure 16 and Table 34 respectively. Unless otherwise stated, the parameters listed are measured using ambient temperature and supply voltage conditions in accordance with Table 6.

Table 34. Input and output AC characteristics (1)

| MODEx[1:0] | Symbol                                                                                                                 | Parameter                                                                 | Condition                                             | Minimum value | Maximum<br>value | Unit |
|------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|---------------|------------------|------|
|            | f <sub>max(IO)out</sub>                                                                                                | Maximum frequency <sup>(2)</sup>                                          | $C_L = 50 \text{ pF}, V_{DD} = 2 \sim 3.6 \text{V}$   | -             | 2                | MHz  |
| 10 (2MHz)  | t <sub>f(IO)out</sub>                                                                                                  | Output high to low level fall time                                        | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 2~3.6V      | -             | 125(3)           | ns   |
|            | $t_{r(IO)out}$                                                                                                         | Output low to high rise time                                              | CL= 30 pr, VDD= 2~3.0 V                               | -             | 125(3)           | 118  |
|            | fmax(IO)out                                                                                                            | Maximum frequency <sup>(2)</sup>                                          | $C_L = 50 \text{ pF}, V_{DD} = 2 \sim 3.6 \text{V}$   | -             | 10               | MHz  |
| 01 (10MHz) | $t_{f(IO)out}$                                                                                                         | Output high to low level fall time                                        | C50 = EV 2 2 6V                                       | -             | 25(3)            |      |
|            | $t_{r(IO)out}$                                                                                                         | Output low to high rise time                                              | $C_{L}=50 \text{ pF}, V_{DD}=2\sim3.6 \text{V}$       | -             | 25(3)            | ns   |
|            |                                                                                                                        |                                                                           | $C_L=30 \text{ pF}, V_{DD}=2.7\sim3.6 \text{V}$       | -             | 50               |      |
|            | f <sub>max(IO)out</sub>                                                                                                | Maximum frequency <sup>(2)</sup>                                          | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \sim 3.6 \text{V}$ | -             | 30               | MHz  |
|            |                                                                                                                        |                                                                           | $C_L=50 \text{ pF}, V_{DD}=2\sim2.7 \text{V}$         | -             | 20               |      |
|            |                                                                                                                        |                                                                           | $C_L=30 \text{ pF}, V_{DD}=2.7\sim3.6V$               | -             | 5(3)             |      |
| 11 (50MHz) | $\begin{array}{ c c c c c }\hline t_{f(IO)out} & Output \ high \ to \ low \ level \ fall \ time \\ \hline \end{array}$ | Output high to low level fall time                                        | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \sim 3.6 \text{V}$ | -             | 8(3)             |      |
|            |                                                                                                                        | $C_L=50 \text{ pF}, V_{DD}=2\sim2.7 \text{V}$                             | -                                                     | 12(3)         | ns               |      |
|            |                                                                                                                        |                                                                           | $C_L=30 \text{ pF}, V_{DD}=2.7\sim3.6V$               | -             | 5(3)             | 115  |
|            | $t_{r(IO)out}$                                                                                                         | Output low to high rise time                                              | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \sim 3.6 \text{V}$ | -             | 8(3)             |      |
|            |                                                                                                                        |                                                                           | $C_L=50 \text{ pF}, V_{DD}=2\sim2.7 \text{V}$         | -             | 12(3)            |      |
| -          | t <sub>EXTIpw</sub>                                                                                                    | The EXTI controller detects the pulse of an external signal.  punch width | -                                                     | 10            | -                | ns   |

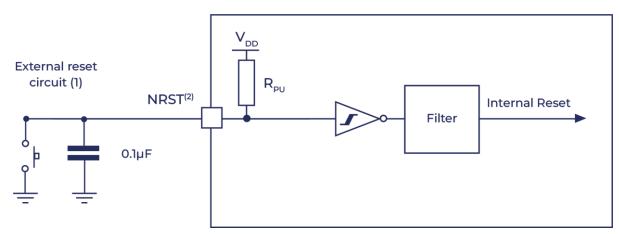
- 1. The speed of the I/O port can be configured through MODEx [1:0]. See the TGS32F103xB reference manual for a description of the GPIO port configuration registers.
- 2. Maximum frequency is defined in Figure 16.
- 3. Guaranteed by design, not tested in production.

Figure 16. Definition of input and output AC characteristics



## 5.3.13 NRST pin characteristics

The NRST pin input driver uses CMOS technology and is connected to a pull-up resistor, RPU, that cannot be disconnected (see Table 32). Unless otherwise noted, the parameters listed in Table 35 were measured using ambient temperature and VDD supply voltage conditions consistent with Table 6.


Table 35. NRST pin characteristics

| Symbol                     | Parameter                                         | Condition       | Minimum<br>value | Typical<br>value | Maximum value        | Unit |
|----------------------------|---------------------------------------------------|-----------------|------------------|------------------|----------------------|------|
| V <sub>IL(NRST)</sub> (1)  | NRST input low level voltage                      |                 | -0.5             |                  | 0.8                  | V    |
| $V_{IH(NRST)}^{(1)}$       | NRST input high level voltage                     |                 | 2                |                  | V <sub>DD</sub> +0.5 | •    |
| V <sub>hys(NRST)</sub> (1) | NRST Schmitt trigger voltage hysteresis           |                 |                  | 200              |                      | mV   |
| $R_{\mathrm{PU}}$          | Weak pull-up equivalent resistance <sup>(2)</sup> | $V_{IN}=V_{SS}$ | 30               | 40               | 50                   | kΩ   |
| $V_{F(NRST)}^{(1)}$        | NRST input filter pulse                           |                 |                  |                  | 100                  | ns   |
| V <sub>NF(NRST)</sub> (1)  | NRST input non-filtered pulse                     |                 | 300              |                  |                      | ns   |

<sup>1.</sup> Guaranteed by design, not tested in production.

2. The pull-up resistor is designed as a real resistor in series with a switchable PMOS implementation. The resistance of this  $\frac{PMON}{NMOS}$  switch is very small (about 10%).

Figure 17. Recommended NRST pin protection



- 1. The reset network is to prevent spurious resets.
- 2. The user must ensure that the potential of the NRST pin can be lower than the maximum  $V_{\rm IL(NRST)}$  listed in Table 35, otherwise the MCU cannot be reset.

## **5.3.14 TIM timer characteristics**

The parameters listed in Table 36 are guaranteed by design.

For details on the characteristics of input and output multiplexing function pins (output comparison, input capture, external clock, PWM output), see Chapter Section 5.3.12.

Table 36. TIM characteristics

| Symbol                 | Parameter                            | Condition                     | Minimum<br>value | Maximum value           | Unit     |
|------------------------|--------------------------------------|-------------------------------|------------------|-------------------------|----------|
| 4                      | Timer resolution time                |                               | 1                | -                       | ttimxclk |
| t <sub>res(TIM)</sub>  | Timer resolution time                | $f_{TIMxCLK} = 72MHz$         | 13.9             | -                       | ns       |
| C                      | Timer external clock for CH1 to      |                               | 0                | f <sub>TIMxCLK</sub> /2 | MHz      |
| $f_{EXT}$              | CH4 frequency                        | $f_{\text{TIMxCLK}} = 72 MHz$ | 0                | 36                      | MHz      |
| Restim                 | Timer resolution                     |                               | -                | 16                      | bit      |
| ,                      | When the internal clock is selected, |                               | 1                | 65536                   | ttimxclk |
| tcounter               | 16-bit counter clock period          | $f_{TIMxCLK} = 72MHz$         | 0.0139           | 910                     | μs       |
| 4                      | Maximum massible sount               |                               | -                | 65536x65536             | ttimxclk |
| t <sub>MAX_COUNT</sub> | Maximum possible count               | f <sub>TIMxCLK</sub> = 72MHz  | -                | 59.6                    | S        |

1. TIMx is a common name, representing TIM1~TIM4.

#### **5.3.15** Communication interface

#### **I2C** interface features

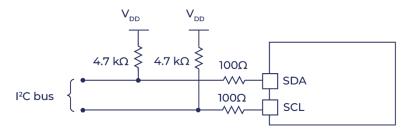
Unless otherwise stated, the parameters listed in Table 50 and Table 37 are measured using ambient temperature, fPCLK1 frequency and V supply voltage in compliance with the conditions of Table 6.

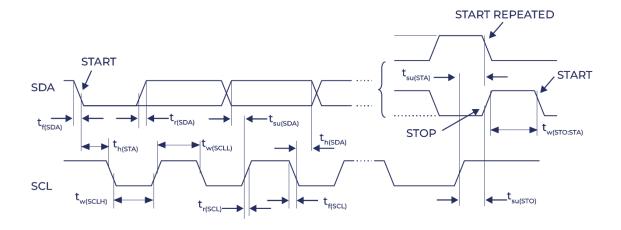
The I2C interface of the TGS32F103xB standard product complies with the standard I2C communication protocol, but has the following limitations: SDA and SCL are not "true" open-drain pins. When configured as open-drain output, the PMOS tube between the pin and VDD is Closed, but still there.

The I2C interface characteristics are listed in Table 37. For details on the characteristics of the input and output alternate function pins (SDA and SCL), see Section 5.3.12.

Table 37. I2C interface characteristics

|                            |                                                        | Standard      | Standard I2C <sup>(1)</sup> |               | Fast I2C <sup>(1)(2)</sup> |      |
|----------------------------|--------------------------------------------------------|---------------|-----------------------------|---------------|----------------------------|------|
| Symbol                     | Parameter                                              | Maximum value | Minimum<br>value            | Maximum value | Minimum<br>value           | Unit |
| $t_{w(SCLL)}$              | SCL clock low time                                     | 4.7           | 1                           | 1.3           | -                          | 110  |
| twsclh)                    | SCL clock high time                                    | 4.0           | ı                           | 0.6           | 1                          | μs   |
| $t_{su(SDA)}$              | SDA establishment time                                 | 250           | -                           | 100           | -                          |      |
| th(SDA)                    | SDA data retention time                                | 0(3)          | 1                           | 0(4)          | 900(3)                     |      |
| $t_{r(SDA)} \\ t_{r(SCL)}$ | SDA and SCL rise time                                  | -             | 1000                        | 20+0.1Cb      | 300                        | ns   |
| $t_{f(SDA)}$ $t_{f(SCL)}$  | SDA and SCL fall time                                  | -             | 300                         | -             | 300                        |      |
| th(STA)                    | Start condition hold time                              | 4.0           | 1                           | 0.6           | -                          |      |
| t <sub>su(STA)</sub>       | Repeated start condition establishment time            | 4.7           | -                           | 0.6           | -                          | μs   |
| t <sub>su(STO)</sub>       | Stop condition establishment time                      | 4.0           | -                           | 0.6           | -                          | μs   |
| tw(STO:STA)                | Time from stop condition to start condition (bus idle) | 4.7           | -                           | 1.3           | -                          | μs   |
| Cb                         | Capacitive loading of each bus                         | -             | 400                         | -             | 400                        | pF   |


<sup>1.</sup> Guaranteed by design, not tested in production.


<sup>2.</sup> To reach the maximum frequency of standard mode I2C, fPCLK1 must be greater than 2 MHz. To reach the maximum frequency of fast mode I2C, fPCLK1 must be greater than 4 MHz.

<sup>3.</sup> If there is no requirement to extend the low-level time of the SCL signal, then only the maximum holding time of the start condition must be met.

<sup>4.</sup> In order to cross the undefined area of the SCL falling edge, a hold time of at least 300 ns on the SDA signal must be guaranteed internally in the MCU.

Figure 18. I2C bus AC waveform and measurement waveform





1. The measurement points are set at CMOS levels:  $0.3V_{DD}$  and  $0.7V_{DD}$ .

Table 38. SCL frequency  $(f_{PCLK1} = 36MHz, V_{DD} = 3.3V)^{(1)(2)}$ 

| form any              | I <sup>2</sup> C_CCR value |
|-----------------------|----------------------------|
| <sup>‡</sup> SCL(kHz) | RP=4.7 kΩ                  |
| 400                   | 0x801E                     |
| 300                   | 0x8028                     |
| 200                   | 0x803C                     |
| 100                   | 0x00B4                     |
| 50                    | 0x0168                     |
| 20                    | 0x0384                     |

1. RP=external pull-up resistor,  $f_{SCL}$ =I2C speed.

2. For speeds around 200 kHz, the speed error is  $\pm 5\%$ . For other speed ranges, the speed error is  $\pm 2\%$ . These variations depend on the accuracy of external components in the design.

### **SPI** interface features

Unless otherwise stated, the parameters listed in Table 39 are measured using ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage consistent with the conditions of Table 6.

For details on the characteristics of the input and output alternate function pins (NSS, SCK, MOSI, MISO), see Section 5.3.12.

Table 39. SPI Characteristics<sup>(1)</sup>

| Symbol                                  | Parameter                       | Condition                                                       | Minimum<br>value    | Maximum value       | Unit |
|-----------------------------------------|---------------------------------|-----------------------------------------------------------------|---------------------|---------------------|------|
| £ 1/4                                   | CDI -11- f                      | Main mode                                                       | -                   | 18                  | MII- |
| $f_{SCK}1/t_{c(SCK)}$                   | SPI clock frequency             | Slave mode                                                      | -                   | 18                  | MHz  |
| $t_{r(SCK)} \\ t_{f(SCK)}$              | SPI clock rise and fall times   | Load capacitance: C = 30pF                                      | -                   | 8                   | ns   |
| Ducy(SCK)                               | Slave input clock duty cycle    | Slave mode                                                      | 30                  | 70                  | %    |
| t <sub>su(NSS)</sub> (2)                | NSS establishment time          | Slave mode                                                      | 4t <sub>PCLCK</sub> | -                   |      |
| th(NSS) (2)                             | NSS hold time                   | Slave mode                                                      | 2t <sub>PCLCK</sub> | -                   |      |
| $t_{w(SCKH)}^{(2)}$ $t_{w(SCKL)}^{(2)}$ | SCK high and low times          | Master mode, f <sub>PCLK</sub> = 36MHz, prescaler coefficient=4 | 50                  | 60                  |      |
| $T_{su(MI)}^{(2)}$                      | Data input setup time, master   | Main mode                                                       | 5                   | -                   |      |
| $T_{su(SI)}$                            | mode                            | Slave mode                                                      | 5                   | -                   |      |
| T <sub>h(MI)</sub> (2)                  | Data input hold time, main mode | Main mode                                                       | 5                   | -                   | ns   |
| $T_{h(SI)}^{(2)}$                       | Data input noid time, main mode | Slave mode                                                      | 4                   | -                   | 113  |
| Ta(SO) (2)(3)                           | Data output access time         | Slave mode, f <sub>PCLK</sub> =20 MHz                           | 0                   | 3t <sub>PCLCK</sub> |      |
| t <sub>dis(SO)</sub> (2)(4)             | Data output prohibition time    | Slave mode                                                      | 2                   | 10                  |      |
| $t_{v(SO)}(^{2)(1)}$                    | Data output valid time          | Slave mode (after enable edge)                                  |                     | 25                  |      |
| t <sub>v(MO)</sub> (2)(1)               | Data output valid time          | Master mode (after enable edge)                                 |                     | 5                   |      |
| Th(SO) (2)                              | Data output hold time           | Slave mode (after enable edge)                                  | 15                  | -                   |      |
| T <sub>h(MO)</sub> (2)                  | Data output hold time           | Master mode (after enable edge)                                 | 2                   | -                   |      |

- 1. The remapped SPI1 characteristics need to be further determined.
- 2. Derived from comprehensive evaluation and not tested in production.
- 3. The minimum value indicates the minimum time for driving output, and the maximum value indicates the maximum time for correctly obtaining data.
- 4. The minimum value indicates the minimum time to turn off the output, and the maximum value indicates the maximum time to put the data line in a high-impedance state.

Figure 19. SPI timing diagram - slave mode and CPHA=0

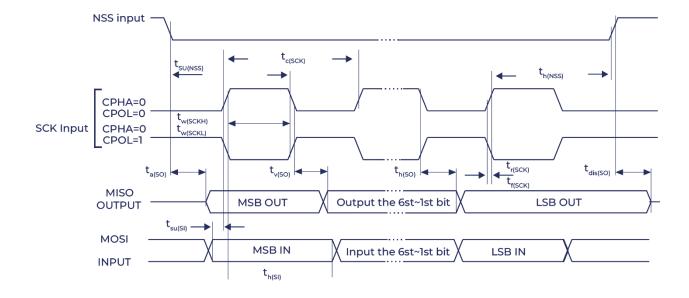
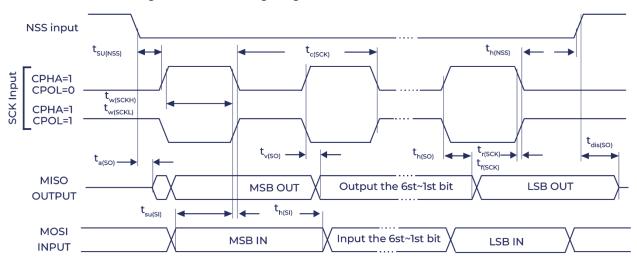
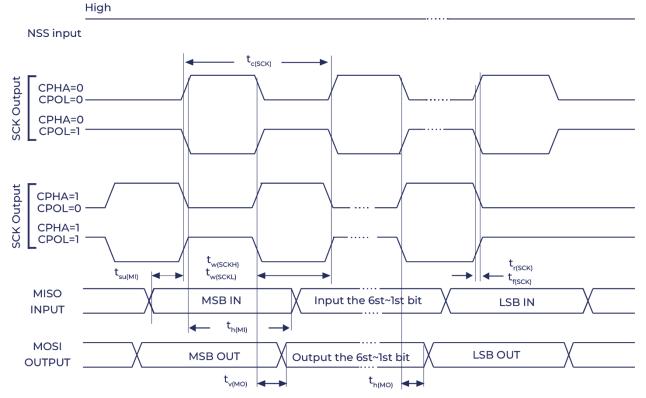





Figure 20. SPI Timing Diagram – Slave Mode and CPHA=1<sup>(1)</sup>



1. Measurement points are set at CMOS levels:  $0.3V_{\text{DD}}$  and  $0.7V_{\text{DD}}.$ 

Figure 21. SPI Timing Diagram - Master Mode<sup>(1)</sup>



1. Measurement points are set at CMOS levels:  $0.3V_{DD}$  and  $0.7V_{DD}$ .

#### **USB** features

The USB (full speed) interface has passed USB-IF certification.

Table 40. USB boot time

| Symbol                   | Parameter                    | Maximum value | Unit |
|--------------------------|------------------------------|---------------|------|
| t <sub>STARTUP</sub> (1) | USB transceiver startup time | 1             | μs   |

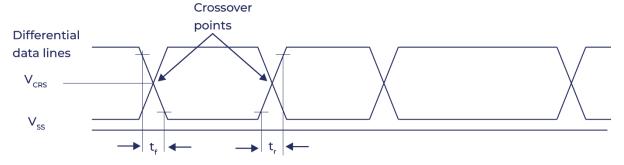

1. Guaranteed by design, not tested in production.

Table 41. USB DC characteristics

| Symbol                         | Parameter                            | Condition                                           | Minimum <sup>(1)</sup> | Max <sup>(1)</sup> | Unit |  |  |
|--------------------------------|--------------------------------------|-----------------------------------------------------|------------------------|--------------------|------|--|--|
|                                |                                      | Input level                                         |                        |                    |      |  |  |
| $V_{ m DD}$                    | USB operating voltage <sup>(2)</sup> |                                                     | 3 0 (3)                | 3.6                | V    |  |  |
| $V_{DI}^{(4)}$                 | Differential input sensitivity       | I(USBDP, USBDM)                                     | 0.2                    | -                  |      |  |  |
| V <sub>CM</sub> <sup>(4)</sup> | Differential common mode range       | Contains V <sub>DI</sub> scope                      | 0.8                    | 2.5                | V    |  |  |
| $V_{SE}^{}$                    | Single-ended receiver threshold      |                                                     | 1.3                    | 2.0                |      |  |  |
|                                | Output level                         |                                                     |                        |                    |      |  |  |
| $V_{OL}$                       | Static output low level              | $1.5 \mathrm{k}\Omega$ RL to $3.6 \mathrm{V}^{(5)}$ | -                      | 0.3                | V    |  |  |
| $V_{OH}$                       | Static output high level             | RL of $15k\Omega$ to $V_{SS}^{(5)}$                 | 2.8                    | 3.6                | V    |  |  |

- 1. All voltage measurements are based on the equipment ground wire.
- 2. In order to be compatible with the USB 2.0 full-speed electrical specification, the USB DP(D+) pin must be connected to the 3.0  $\sim$  3.6V voltage through a 1.5 k $\Omega$  resistor.
- 3. The correct USB function of TGS32F103xB can be guaranteed at 2.7 V, instead of degrading the electrical characteristics in the  $2.7 \sim 3.0 \text{ V}$  voltage range.
- 4. Guaranteed by comprehensive evaluation and not tested in production.
- 5. RL is the load connected to the USB drive.

Figure 22. USB timing: data signal rise and fall time definition



- 1. Guaranteed by design, not tested in production.
- 2. Measure the data signal from 10% to 90% .

Table 42. USB full-speed electrical characteristics (1)

| Symbol           | Parameter                   | Condition               | Minimum value | Maximum value | Unit |
|------------------|-----------------------------|-------------------------|---------------|---------------|------|
| $t_r$            | Rise time <sup>(2)</sup>    | $C_L \le 50 \text{ pF}$ | 4             | 20            | ns   |
| $t_{\mathrm{f}}$ | Fall time <sup>(2)</sup>    | $C_L \le 50 \text{ pF}$ | 4             | 20            | ns   |
| $t_{rfm}$        | Rise and fall time matching | $t_r / t_f$             | 90            | 110           | %    |
| VCRS             | Output signal cross voltage |                         | 1.3           | 2.0           | V    |

#### 5.3.16 CAN (Controller Area Network) interface

For details on the characteristics of the input-output alternate function pins (CAN\_TX and CAN\_RX), see Section 5.3.12.

#### 5.3.17 12-bit ADC characteristics

Unless otherwise noted, the parameters in Table 43 are measured using ambient temperature,  $f_{PCLK2}$  frequency, and  $V_{DDA}$  supply voltage consistent with the conditions of Table 6.

Note: It is recommended to perform a calibration at every power-up.

Table 43. ADC Characteristics

| Symbol                           | Parameter                                    | Condition                  | Minimum value                                                | Typical<br>value   | Maximum value      | Unit               |
|----------------------------------|----------------------------------------------|----------------------------|--------------------------------------------------------------|--------------------|--------------------|--------------------|
| $V_{DDA}$                        | Supply voltage                               | -                          | 2.4                                                          | 1                  | 3.6                | V                  |
| $V_{REF+}$                       | Positive reference voltage                   | -                          | 2.4                                                          | 1                  | $V_{\mathrm{DDA}}$ | V                  |
| $I_{VREF}$                       | Current on VREF input pin                    | -                          | -                                                            | $160^{(1)}$        | $220^{(1)}$        | μΑ                 |
| fadc                             | ADC clock frequency                          | -                          | 0.6                                                          | 1                  | 14                 | MHz                |
| f <sub>S</sub> <sup>(2)</sup>    | Sampling rate                                | -                          | 0.05                                                         | 1                  | 1                  | MHz                |
| f <sub>TRIG</sub> <sup>(2)</sup> | External trigger frequency                   | $f_{ADC} = 14 \text{ MHz}$ | -                                                            | -                  | 823                | kHz                |
| TIRIG                            | External trigger frequency                   | -                          | -                                                            | -                  | 17                 | 1/f <sub>ADC</sub> |
| $V_{\text{AIN}^{(3)}}$           | Conversion voltage range                     | -                          | 0(V <sub>SSA</sub> or V <sub>REF</sub> -connected to ground) | -                  | $V_{\text{REF+}}$  | V                  |
| $R_{AIN}^{(2)}$                  | External input impedance                     |                            | -                                                            | -                  | 50                 | kΩ                 |
| R <sub>ADC</sub> <sup>(2)</sup>  | Sampling switch resistance                   |                            | -                                                            | -                  | 1                  | kΩ                 |
| C <sub>ADC</sub> <sup>(2)</sup>  | Internal sample and hold capacitor           |                            | -                                                            | 1                  | 8                  | pF                 |
| t <sub>CAL</sub> (2)             | Calibration time                             | $f_{ADC} = 14 \text{ MHz}$ |                                                              | 5.9                |                    | μs                 |
| tCAL` /                          |                                              |                            | 83                                                           |                    |                    | $1/f_{ADC}$        |
| t <sub>lat</sub> (2)             | Injection trigger conversion delay           | $f_{ADC} = 14 \text{ MHz}$ | -                                                            | -                  | 0.214              | μs                 |
| Uat` /                           | injection trigger conversion delay           |                            | -                                                            | 1                  | 3(4)               | $1/f_{ADC}$        |
|                                  | Normal trigger conversion delay              | $f_{ADC} = 14 \text{ MHz}$ | -                                                            | -                  | 0.143              | μs                 |
| t <sub>latr</sub> (2)            | Normal trigger conversion delay              |                            | -                                                            | -                  | 2(4)               | $1/f_{ADC}$        |
| ts <sup>(2)</sup>                | Sampling time                                | $f_{ADC} = 14 \text{ MHz}$ | 0.107                                                        | -                  | 17.1               | μs                 |
| _                                | Sampling time                                |                            | 1.5                                                          | -                  | 239.5              | $1/f_{ADC}$        |
| tstab(2)                         | Power on time                                |                            | 0                                                            | 0                  | 1                  | μs                 |
|                                  | Total conversion time                        | $f_{ADC} = 14 \text{ MHz}$ | 1                                                            | -                  | 18                 | μs                 |
| tconv <sup>(2)</sup>             | ONV <sup>(2)</sup> (Including sampling time) |                            | 14 ~ 252 (sampling ts<br>1                                   | + gradually a 2.5) | pproaching         | $1/f_{ADC}$        |

- 1. Guaranteed by comprehensive evaluation and not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. In QFN36, LQFP48 and LQFP64 package products,  $V_{REF+}$  is internally connected to  $V_{DDA}$  and  $V_{REF-}$  is internally connected to
- 4. Receive  $V_{SSA}$ . See Table 2 for details.
- 5. For external triggering, a delay of  $1/f_{PCLK2}$  must be added to the delays listed in Table 43.

#### Formula 1: Maximum RAIN formula

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times In(2^{N+2})} - R_{ADC}$$

The above equation (Equation 1) is used to determine the maximum external impedance such that the error can be less than 1/4 LSB. Where N = 12 (meaning 12-bit resolution).

Table 44. Maximum  $R_{AIN}$  when  $f_{ADC} = 14 \text{ MHz}^{(1)}$ 

| $T_{S}(period)$ | t <sub>S</sub> (μs) | Maximum $R_{AIN}(k\Omega)$ |
|-----------------|---------------------|----------------------------|
| 1.5             | 0.11                | 0.4                        |
| 7.5             | 0.54                | 5.9                        |
| 13.5            | 0.96                | 11.4                       |
| 28.5            | 2.04                | 25.2                       |
| 41.5            | 2.96                | 37.2                       |
| 55.5            | 3.96                | 50                         |
| 71.5            | 5.11                | -                          |
| 239.5           | 17.1                | -                          |

1. Guaranteed by design, not tested in production.

Table 45. ADC Accuracy – Limited Test Conditions<sup>(1)(2)</sup>

| Symbol | Parameter                 | Test conditions                                         | Typical value | Max <sup>(3)</sup> | Unit |
|--------|---------------------------|---------------------------------------------------------|---------------|--------------------|------|
| ET     | Comprehensive error       | $f_{PCLK2} = 56 \text{ MHz } f_{ADC} = 14 \text{ MHz},$ | ±1.3          | ±2                 |      |
| EO     | Offset error              | $R_{AIN}$ < 10 k $\Omega$ ,                             | ±1            | ±1.5               |      |
| EG     | Gain error                | $V_{DDA} = 3 \sim 3.6 V$                                | ±0.5          | ±1.5               | LSB  |
| ED     | Differential linear error | $T_A=25$ °C                                             | ±0.7          | ±1                 |      |
| EL     | Integral linearity error  | Measurements are taken after ADC calibration            | ±0.8          | ±1.5               |      |

- 1. ADC DC accuracy values are measured after internal calibration.
- 2. Relationship between ADC accuracy and reverse injection current: Injecting reverse current on any standard analog input pin needs to be avoided, as this will significantly reduce the accuracy of the ongoing conversion on another analog input pin. It is recommended to add a Schottky diode (between the pin and ground) to a standard analog pin that may generate reverse injection current.
- 3. If the injected current is in the forward direction, it will not affect the ADC accuracy as long as it is within the range of IINJ(PIN) and  $\Sigma$ IINJ(PIN) given in Section 5.3.12.
- 4. Guaranteed by comprehensive evaluation and not tested in production.

Table 46. ADC accuracy<sup>(1)(2)(3)</sup>

| Symbol | Parameter                 | Test conditions                                                                       | Typical<br>value | Max <sup>(3)</sup> | Unit |
|--------|---------------------------|---------------------------------------------------------------------------------------|------------------|--------------------|------|
| ET     | Comprehensive error       |                                                                                       | ±2               | ±5                 |      |
| EO     | Offset error              | $f_{PCLK2} = 56 \text{ MHz } f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$ | ±1.5             | ±2.5               |      |
| EG     | Gain error                | $V_{DDA} = 2.4 \sim 3.6 \text{ V}$                                                    | ±1.5             | ±3                 | LSB  |
| ED     | Differential linear error | Measurements are taken after ADC calibration                                          | ±1               | ±2                 |      |
| EL     | Integral linearity error  |                                                                                       | ±1.5             | ±3                 |      |

- 1. ADC DC accuracy values are measured after internal calibration.
- 2. Optimum performance can be achieved within restricted V<sub>DD</sub>, frequency, V<sub>REF</sub> and temperature ranges.
- 3. ADC accuracy versus reverse injection current: It is necessary to avoid injecting reverse current on any standard analog input pin, as this will significantly reduce the accuracy of the ongoing conversion on another analog input pin. It is recommended to add a Schottky diode (between the pin and ground) to a standard analog pin that may generate reverse injection current.
- 4. If the injection current is in the forward direction, it will not affect the ADC accuracy as long as it is within the range of IINJ(PIN) and  $\Sigma$ IINJ(PIN) given in Section 5.3.12.
- 5. Guaranteed by comprehensive evaluation and not tested in production.

Figure 23. ADC accuracy characteristics

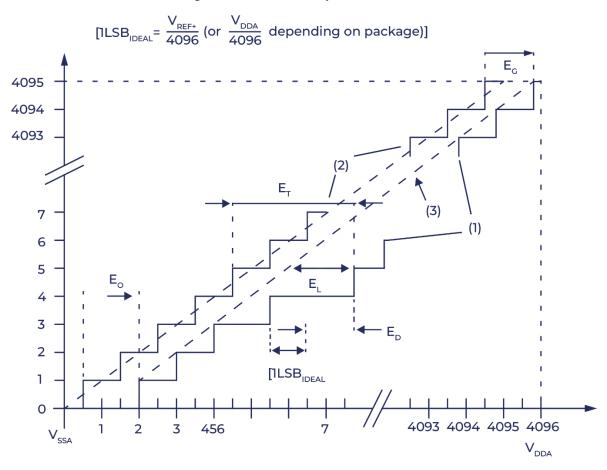
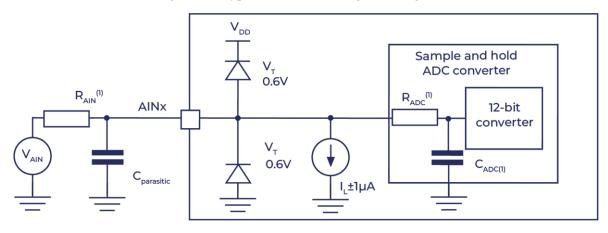
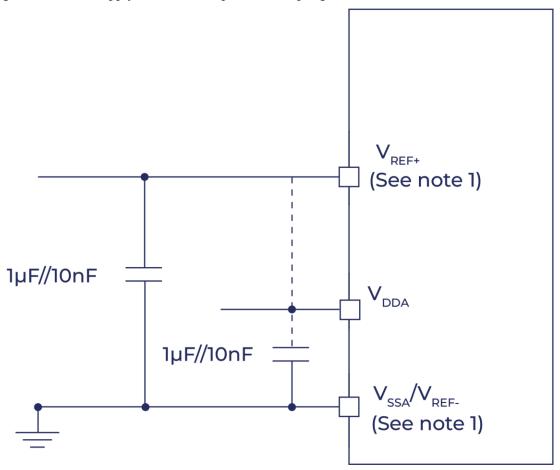




Figure 24. Typical connection diagram using ADC




- 1. See Table 46 for  $R_{\mbox{\scriptsize AIN}},\,R_{\mbox{\scriptsize ADC}},$  and  $C_{\mbox{\scriptsize ADC}}$  values.
- 2. Cparasitic represents the parasitic capacitance (about 7pF) on the PCB (related to soldering and PCB layout quality) and pad. Larger Cparasitic values will reduce the accuracy of the conversion, and the solution is to reduce  $f_{ADC}$ .

## PCB design advice

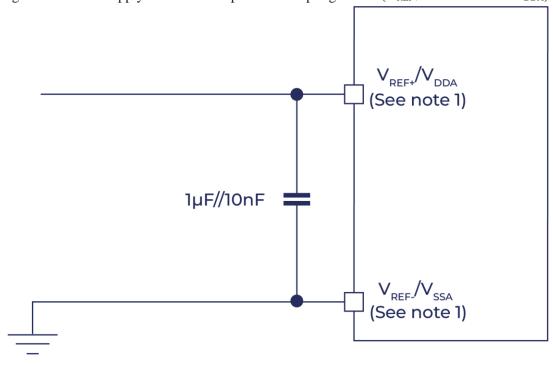

Depending on whether  $V_{REF+}$  is connected to  $V_{DDA}$ , the decoupling of the power supply must be connected as shown in Figure 25 or Figure 26. The 10nF capacitors in the picture must be ceramic capacitors, and they should be as close to the MCU chip as possible.

Figure 26. Power supply and reference power decoupling circuit (V<sub>REF+</sub> is not connected to V<sub>DDA</sub>)



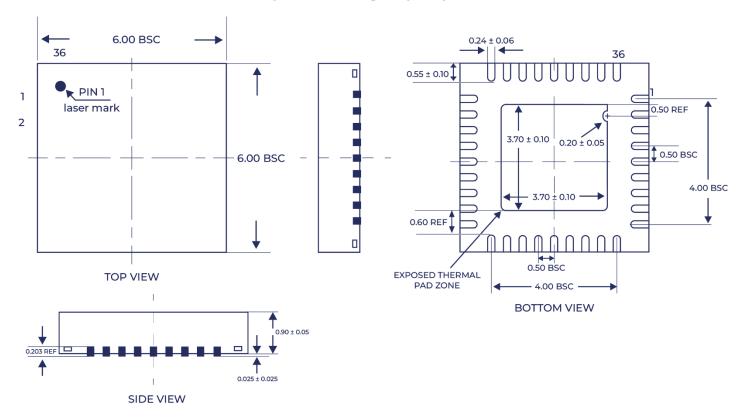
1.  $V_{\text{REF+}}$  and  $V_{\text{REF-}}$  inputs only appear on products with more than 100 pins.

Figure 27. Power supply and reference power decoupling circuit ( $V_{REF+}$  is connected to  $V_{DDA}$ )



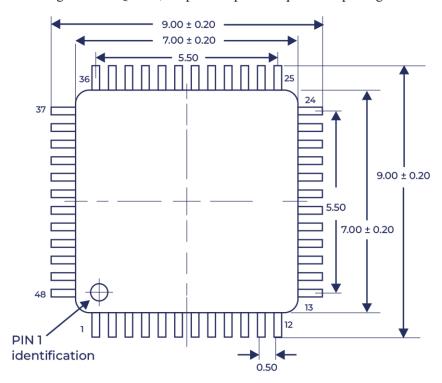
1.  $V_{\text{REF+}}$  and  $V_{\text{REF-}}$  inputs only appear on products with pins above 100.

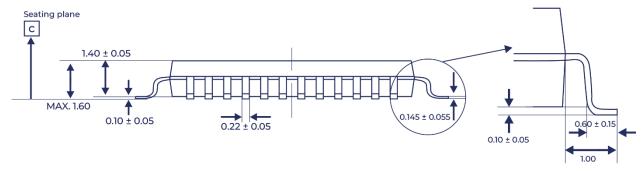
# **5.3.18** Temperature sensor characteristics


Table 47. Temperature sensor characteristics

| Symbol                   | Parameter                                                | Minimum<br>value | Typical value | Maximum<br>value | Unit  |
|--------------------------|----------------------------------------------------------|------------------|---------------|------------------|-------|
| $T_{L}^{(1)}$            | V <sub>SENSE</sub> linearity with respect to temperature | 1                | ±1            | ±2               | °C    |
| AVG slope <sup>(1)</sup> | Average slope                                            | 4.0              | 4.3           | 4.6              | mV/°C |
| $V_{25}^{(1)}$           | Voltage at 25°C                                          | 1.34             | 1.43          | 1.52             | V     |
| T <sub>start</sub> (2)   | Setup time                                               | 4                | -             | 10               | μs    |
| $T_{s\_temp}^{(2)(3)}$   | When reading temperature, ADC sampling time              | 1                | -             | 17.1             | μs    |

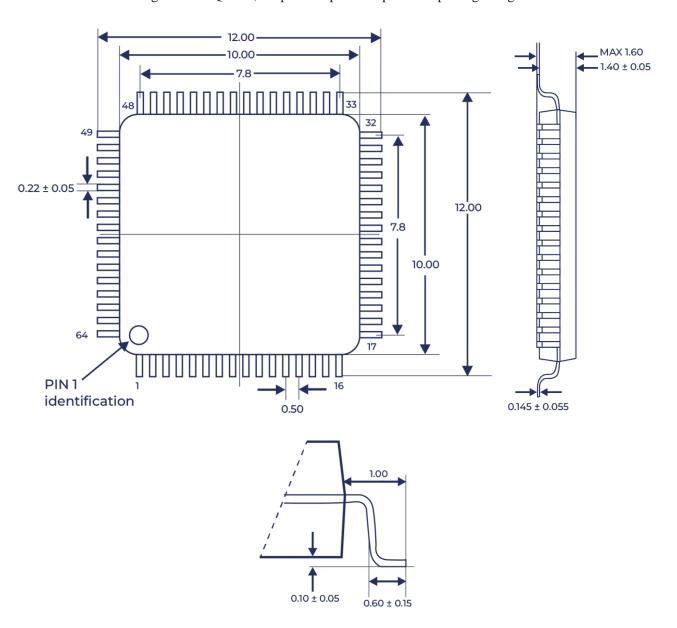
- 1. Guaranteed by comprehensive evaluation and not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. The minimum sampling time can be determined by the application through multiple loops.


- 6. Packaging characteristics
- 6.1 Packaging mechanical data
- 6.1.1 QFN36


Figure 27. QFN36 package diagram



# 6.1.2 LQFP48


Figure 28. LQFP48, 48-pin low profile square flat package





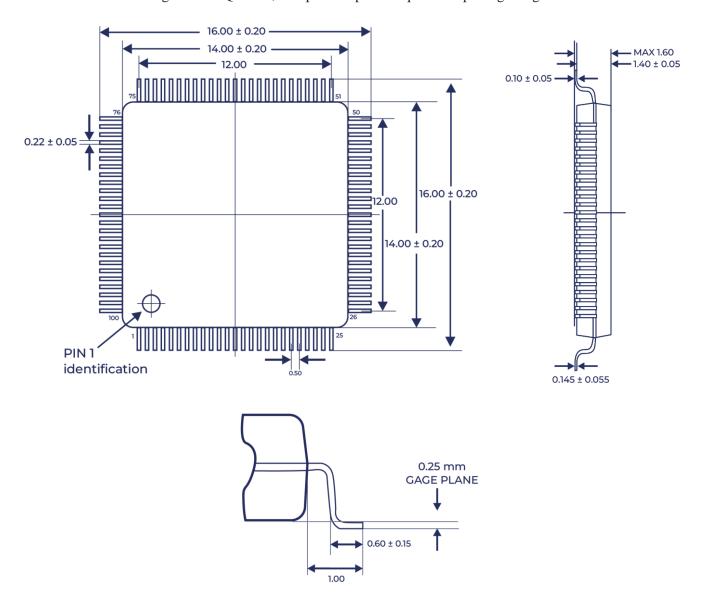

# 6.1.3 LQFP64

Figure 29. LQFP64, 64-pin low-profile square flat package diagram



# 6.1.4 LQFP100

Figure 30. LQFP100, 100-pin low-profile square flat package diagram



## **6.2** Thermal characteristics

The maximum junction temperature  $(T_{Jmax})$  of the chip must not exceed the numerical range given in Table 6.

The maximum junction temperature  $(T_{J_{max}})$  of the chip is expressed in degrees Celsius and can be calculated by the following formula:

$$T_{J}max = T_{A}max + (P_{D}max \times \Theta_{JA})$$

in:

- T<sub>Amax</sub> is the maximum ambient temperature in °C,
- OJA is the junction-to-ambient thermal impedance of the package, expressed in °C/W,
- $P_{Dmax}$  is the sum of  $P_{INTmax}$  and PI/Omax ( $P_{Dmax}$  = $P_{INTmax}$  + PI/Omax),
- $\bullet$   $P_{INTmax}$  is the product of  $I_{DD}$  and  $V_{DD}$ , expressed in Watts, and is the maximum internal power consumption of the chip.

PI/Omax is the maximum power consumption of all output pins:

$$PI/Omax = \Sigma(V_{OL} \times I_{OL}) + \Sigma((V_{DD} - V_{OH}) \times I_{OH})$$

Consider the actual  $V_{\text{OL}}/I_{\text{OL}}$  and  $V_{\text{OH}}/I_{\text{OH}}$  for low and high levels on the I/Os in the application.

Table 52. Package Thermal Characteristics

| Symbol | Parameter                                                             | Numerical value | Unit |
|--------|-----------------------------------------------------------------------|-----------------|------|
| ΘЈА    | Junction to ambient thermal impedance - LQFP100 - 14×14mm/0.5mm pitch | 46              |      |
|        | Junction to ambient thermal impedance - LQFP64 - 10×10mm/0.5mm pitch  | 45              | °C/W |
|        | Junction to ambient thermal impedance - LQFP48 - 7×7mm/0.5mm pitch    | 55              | C/ W |
|        | Junction to ambient thermal impedance - QFN36-6×6mm/0.5mm pitch       | 18              |      |

# 7. Model naming

| TGS32                          | ${f F}$                      | 407                           | R                          | В                   | T                    | 7                       |
|--------------------------------|------------------------------|-------------------------------|----------------------------|---------------------|----------------------|-------------------------|
| Device family:<br>TGS32 - ARM- | Product type:<br>F - General | Sub family<br>103 - TGS32F103 | Pin count:<br>V - 100 pins | User code<br>memory | Package:<br>T - LOFP | Temperature range:      |
| base 32-bit                    | purpose                      | 103 - 103321103               | R - 64 pins                | size:               | U - QFN              | 7 - Temperature         |
| microcontroller                |                              |                               | C - 48 pins<br>K - 36 pins | B - 128<br>Kbytes   |                      | range, -40 to<br>105 °C |

# 8. Order model

| Model         | Encapsulation | Number of pins | Working temperature |
|---------------|---------------|----------------|---------------------|
| TGS32F103KBU7 | QFN           | 36             | -45°C∼ +105°C       |
| TGS32F103CBT7 | LQFP          | 48             | -45°C∼ +105°C       |
| TGS32F103RBT7 | LQFP          | 64             | -45°C∼ +105°C       |
| TGS32F103VBT7 | LQFP          | 100            | -45°C∼ +105°C       |